dresden elektronik

User Manual Radio Modules

deRFmega128-22M00 deRFmega128-22M10 deRFmega128-22M12

deRFmega256-23M00 deRFmega256-23M10 deRFmega256-23M12

Document Version V1.5 2018-07-13

Table of contents

1.	Overview	6
2.	Applications	6
3.	Features 3.1. deRFmega128-22M00 3.2. deRFmega128-22M10 3.3. deRFmega128-22M12 3.4. deRFmega256-23M00 3.5. deRFmega256-23M10 3.6. deRFmega256-23M12	7 8 9 10 11
4.	 Technical data	19 20 21 22 23 24
5.	Mechanical size 5.1. STEP model library 5.2. deRFmega128-22M00 and deRFmega256-23M00 5.3. deRFmega128-22M10 and deRFmega256-23M10 5.4. deRFmega128-22M12 and deRFmega256-23M12	26 26 27
6.	Soldering profile	29
7.	 Pin assignment	30 33 36 37 40
8.	 PCB design	43 43 44 45 45 46 46 47 48 49
	8.9.1. Overview	

	 8.9.2. PCB design	51 53 53 55 55
9.	Clock	57
10.	Application circuits	58 58 58 59
11.	Programming	60
12.	Pre-flashed firmware	61
13.	Adapter boards	61
14.	Radio certification	62 63 64
15.	Ordering information	66
16.	Related products	67
17.	Packaging dimension 17.1.Packaging for deRFmega128-22M00 and deRFmega256-23M00 17.2.Packaging for deRFmega128-22M12 and deRFmega256-23M12	68
18.	Revision notes	70
19.	References	70

Document history

Date	Version	Description
2012-10-15	1.0	Initial version
2012-11-30	1.1	Update technical data TX_PWR register settings Sensitivity Update signal description
2013-01-22	1.2	RFOUT pin description on deRFmega128-22M12 more precisely specified Update duty cycle limit Addition of deRFmega256-23M00, -23M10, -23M12
2013-07-15	1.3	Addition of reference design for deRFmega256-23M12 Update of duty cycle requirements Update output power requirements Addition of recommended fuse setting Update of FCC section Update of ECAD and STEP libraries
2013-08-28	1.3.1	Minor changes (typo, fixed nomenclature of adapter boards)
2014-02-07	1.4	Addition of reference design description for deRFmega256-23M12 (Power Supply, LEDs and Connector, BoM)
2014-03-17	1.4.1	Addition of fiducial marker description
2014-04-28	1.4.2	Solving minor mistakes in tables 7-1, 7-2, 7-5
2018-07-13	1.5	Addition of ISED for deRFmega128-22M00 Update technical data Update section packaging details

Abbreviations

Abbreviation	Description
IEEE 802.15.4	Communication standard, applicable to low-rate Wireless Personal Area Networks (WPAN)
6LoWPAN	IPv6 over Low Power Wireless Personal Area Networks
ADC	Analog to Digital Converter
CE	Consumer Electronics
EMI	Electromagnetic Interference
ETSI	European Telecommunications Standards Institute
FCC	Federal Communications Commission
GPIO	Generals Purpose Input Output
JTAG	Joint Test Action Group, digital interface for debugging of embedded devices, also known as IEEE 1149.1 standard interface
ISA SP100	International Society of Automation, the Committee establishes standards and related technical information for implementing wireless systems.
ISP	In-System-Programming
LGA	Land Grid Array, a type of surface-mount packaging for integrated circuits
LNA	Low Noise Amplifier
MAC	Medium (Media) Access Control
MCU, µC	Microcontroller Unit
PA	Power Amplifier
РСВ	Printed Circuit Board
PWM	Pulse Width Modulation
RF	Radio Frequency
RPi	Raspberry Pi, a well-known inexpensive single board computer in credit card size
R&TTE	Radio and Telecommunications Terminal Equipment (Directive of the European Union)
SPI	Serial Peripheral Interface
TWI	Two-Wire Serial Interface
U[S]ART	Universal [Synchronous/]Asynchronous Receiver Transmitter
USB	Universal Serial Bus
ZigBee	Low-cost, low-power wireless mesh network standard. The ZigBee Alliance is a group of companies that maintain and publish the ZigBee standard.

1. Overview

The tiny radio module series by dresden elektronik combines Atmel's 8-bit AVR single chip ATmega128RFA1 and ATmega256RFR2 with a small footprint. Six different module types are available providing different features for the custom application.

The deRFmega128-22M00 and deRFmega256-23M00 have an onboard chip antenna to establish a ready-to-use device. No additional and expensive RF designs are necessary. This module is full compliant to all EU and US regulatory requirements.

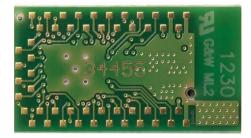
The deRFmega128-22M10 and deRFmega256-23M10 have the smallest form factor of all module types. The customer is free to design his own antenna, coaxial output or front end; but it is also possible to use one of the dresden elektronik's certified and documented RF designs.

The deRFmega128-22M12 and deRFmega256-23M12 have an onboard front-end feature including LNA and PA with 20 dB gain. Furthermore it supports antenna diversity by a direct connection of two antennas or coaxial connectors. All necessary RF parts and switches are integrated. This module type combined with the small form factor is the optimal solution between range extension and space for mounting on PCB.

2. Applications

The main applications for the radio modules are:

- 2.4 GHz IEEE 802.15.4
- ZigBee PRO
- ZigBee RF4CE
- ZigBee IP
- 6LoWPAN
- ISA SP100
- Wireless Sensor Networks
- Industrial and home controlling/monitoring
- Smart Metering


3. Features

3.1. deRFmega128-22M00

The radio module deRFmega128-22M00 offers the following features:

- Tiny size: 23.6 x 13.2 x 3.0 mm
- 51 LGA pads 0.6 x 0.6 mm
- Supply voltage 1.8 V to 3.6 V
- RF shielding
- Onboard 32.768 kHz crystal (Deep-Sleep clock)
- 16 MHz crystal

- Application interfaces: 2x UART, 1x TWI, 1x ADC
- GPIO interface
- Debug/Programming interfaces: 1x SPI, 1x JTAG, 1x ISP
- Onboard 2.4 GHz chip antenna
- Certification: CE, FCC, ISED

Figure 1 shows the block diagram of the radio module deRFmega128-22M00.

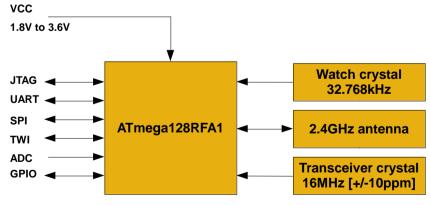
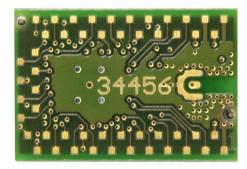


Figure 1: Block diagram deRFmega128-22M00



3.2. deRFmega128-22M10

The radio module deRFmega128-22M10 offers the following features:

- Tiny size: 19.0 x 13.2 x 3.0 mm
- 55 LGA pads 0.6 x 0.6 mm
- Supply voltage 1.8 V to 3.6 V
- RF shielding
- Onboard 32.768 kHz crystal (Deep-Sleep clock)
- 16 MHz crystal

- Application interfaces: 2x UART, 1x TWI, 1x ADC
- GPIO interface
- Debug/Programming interfaces: 1x SPI, 1x JTAG, 1x ISP
- Solderable 2.4 GHz RF output pads (1x RFOUT, 3x RFGND)
- Certification: CE

Figure 2 shows the block diagram of the radio module deRFmega128-22M10.

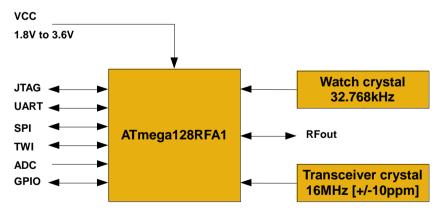
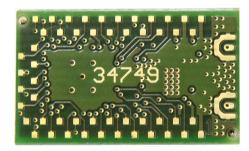
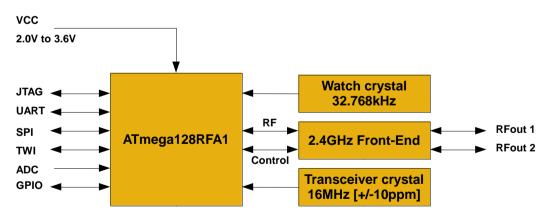


Figure 2: Block diagram deRFmega128-22M10



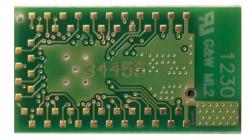
3.3. deRFmega128-22M12

The radio module deRFmega128-22M12 offers the following features:


- Tiny size: 21.5 x 13.2 x 3.0 mm
- 59 LGA pads 0.6 x 0.6 mm
- Supply voltage 2.0 V to 3.6 V
- Antenna diversity support
- RF shielding
- Onboard 32.768 kHz crystal (Deep-Sleep clock)
- 16 MHz crystal

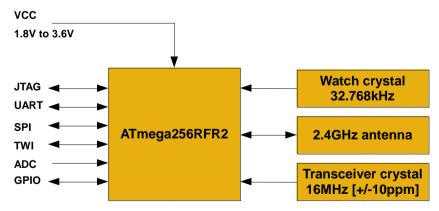
- Application interfaces: 2x UART, 1x TWI
- GPIO interface
- Debug/Programming interfaces: 1x SPI, 1x JTAG, 1x ISP
- 2.4 GHz front-end module with internal 20 dB PA and LNA
- Solderable 2.4 GHz RF output pad (2x RFOUT, 6x RFGND)
- Certification: CE

Figure 3 shows the block diagram of the radio module deRFmega128-22M12.



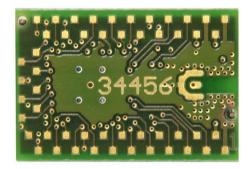
3.4. deRFmega256-23M00

The radio module deRFmega256-23M00 offers the following features:


- Tiny size: 23.6 x 13.2 x 3.0 mm
- 51 LGA pads 0.6 x 0.6 mm
- Supply voltage 1.8 V to 3.6 V
- RF shielding
- Onboard 32.768 kHz crystal (Deep-Sleep clock)
- 16 MHz crystal

- Application interfaces: 2x UART, 1x TWI, 1x ADC
- GPIO interface
- Debug/Programming interfaces: 1x SPI, 1x JTAG, 1x ISP
- Onboard 2.4 GHz chip antenna
- Certification: CE

Figure 4 shows the block diagram of the radio module deRFmega256-23M00.



3.5. deRFmega256-23M10

The radio module deRFmega256-23M10 offers the following features:

- Tiny size: 19.0 x 13.2 x 3.0 mm
- 55 LGA pads 0.6 x 0.6 mm
- Supply voltage 1.8 V to 3.6 V
- RF shielding
- Onboard 32.768 kHz crystal (Deep-Sleep clock)
- 16 MHz crystal

- Application interfaces: 2x UART, 1x TWI, 1x ADC
- GPIO interface
- Debug/Programming interfaces: 1x SPI, 1x JTAG, 1x ISP
- Solderable 2.4 GHz RF output pads (1x RFOUT, 3x RFGND)
- Certification: CE

Figure 5 shows the block diagram of the radio module deRFmega256-23M10.

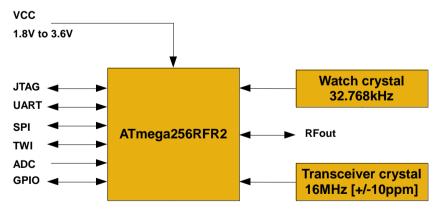
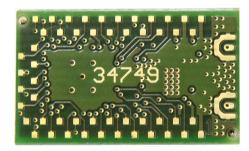
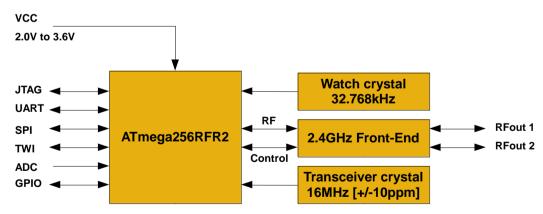


Figure 5: Block diagram deRFmega256-23M10



3.6. deRFmega256-23M12

The radio module deRFmega256-23M12 offers the following features:


- Tiny size: 21.5 x 13.2 x 3.0 mm
- 59 LGA pads 0.6 x 0.6 mm
- Supply voltage 2.0 V to 3.6 V
- Antenna diversity support
- RF shielding
- Onboard 32.768 kHz crystal (Deep-Sleep clock)
- 16 MHz crystal

- Application interfaces: 2x UART, 1x TWI
- GPIO interface
- Debug/Programming interfaces: 1x SPI, 1x JTAG, 1x ISP
- 2.4 GHz front-end module with internal 20 dB PA and LNA
- Solderable 2.4 GHz RF output pad (2x RFOUT, 6x RFGND)
- Certification: CE, FCC

Figure 6 shows the block diagram of the radio module deRFmega256-23M12.

4. Technical data

Table 4-1: Mechanical data

Mechanical	Mechanical				
Radio modules					
Size (L x W x H)	23.6 x 13.2 x 3.0 mm (for 22M00 and 23M00)				
	19.0 x 13.2 x 3.0 mm (for 22M10 and 23M10)				
	21.5 x 13.2 x 3.0 mm (for 22M12 and 23M12)				
Pads					
Туре	LGA				
Pitch 1.60 mm					
Pad size	0.6 x 0.6 mm				

Table 4-2: Temperature range

Temperature range						
	Parameter	Min	Тур	Max	Unit	
Operating temperature range	T _{work}	-40		+85	°C	
Humidity		25		80	% r.H.	
Storage temperature range	T _{storage}	-40		+125	°C	

Table 4-3: Electrical characteristics for deRFmega128 series

Electrical characteristics					
deRFmega128-221	100 and deRFmega128-22M10				
	Parameter	Min	Тур	Max	Unit
Supply Voltage	VCC	1.8	3.3	3.6	V
Current	I_{TXon} (TX_PWR = 0x0)	17.8	18.1	18.2	mA
consumption	I_{Txon} (TX_PWR = 0x6)	16.2	16.4	16.5	mA
	I_{Txon} (TX_PWR = 0xF)	12.5	12.7	12.7	mA
	I _{RXon}	17.5	17.6	17.7	mA
	I _{ldle} (Txoff, MCK = 8 MHz)	4.7	4.8	4.8	mA
	I _{Sleep} (depends on Sleep Mode)		<1		μA

deRFmega128-22M12						
	Parameter	Min	Тур	Max	Unit	
Supply Voltage	VCC	2.0	3.3	3.6	V	
Current	I_{TXon} (TX_PWR = 0x0)	119.4	197.7	205.2	mA	
consumption	I_{TXon} (TX_PWR = 0xF)	27.0	46.1	46.7	mA	
	I _{RXon}	19.8	22.5	22.8	mA	
	I _{Idle} (Txoff, MCK = 8 MHz)	5.2	5.4	5.6	mA	
	I _{Sleep} (depends on Sleep Mode)		<1		μA	

Table 4-4: Electrical characteristics for deRFmega256 series

Electrical					
deRFmega256-23	M00 and deRFmega256-23M10)			
	Parameter	Min	Тур	Max	Unit
Supply Voltage	VCC	1.8	3.3	3.6	V
Current	I_{TXon} (TX_PWR = 0x0)	18.2	18.8	19.1	mA
consumption	I_{TXon} (TX_PWR = 0x6)	16.3	16.5	16.7	mA
	I_{TXon} (TX_PWR = 0xF)	11.2	11.8	12.1	mA
	I _{RXon}	15.9	16.3	16.5	mA
	I _{RXon} (RPC mode)	10.4	10.7	11.0	mA
	I _{Idle} (Txoff, MCK = 8 MHz)	4.3	4.8	5.1	mA
	I _{Sleep} (depends on Sleep Mode)		<2		μA
deRFmega256-23	M12		,		
	Parameter	Min	Тур	Max	Unit
Supply Voltage	VCC	2.0	3.3	3.6	V
Current	I_{TXon} (TX_PWR = 0x0)	139.6	232.5	243.5	mA
consumption	I_{TXon} (TX_PWR = 0xF)	27.7	48.8	49.7	mA
	I _{RXon}	19.0	22.4	22.3	mA
	I _{RXon} (RPC mode)	13.5	16.7	18.0	mA
	I _{Idle} (Txoff, MCK = 8 MHz)	4.6	5.1	5.4	mA
	I _{Sleep} (depends on Sleep Mode)		<2		μA

Table 4-5: Quartz crystal properties

Quartz crystal						
	Parameter	Min	Тур	Max	Unit	
Watch crystal	Frequency		32.768		kHz	
	Frequency tolerance		+/-20		ppm	
Transceiver crystal	Frequency		16.000		MHz	
	Frequency tolerance		+/-10		ppm	

Table 4-6: Radio data of deRFmega128-22M00 and deRFmega128-22M10

Radio 2.4 GHz (Supply voltage VCC = 3.3 V)						
	Parameter / feature	Min	Тур	Max	Unit	
Antenna	Туре	С	hip cerar	nic		
	Gain		-0.7		dBi	
	Diversity		No			
RF Pad	Impedance		50		Ω	
Range	Line of sight Tripod height 1.5m TX_PWR = 0x0		200		m	
Frequency range ¹	PHY_CC_CCA = 0x0B0x1A	2405		2480	MHz	
Channels	PHY_CC_CCA = 0x0B0x1A		16			
Max. Transmitting power conducted	TX_PWR = 0x0 VCC = 3.3 V	2.3		2.9	dBm	
Receiver sensitivity	Data Rate = 250 kBit/s Data Rate = 500 kBit/s Data Rate = 1000 kBit/s Data Rate = 2000 kBit/s		-98 -94 -91 >-80		dBm dBm dBm dBm	
Data rate (gross)	TRX_CTRL_2 = 0x00 TRX_CTRL_2 = 0x01 TRX_CTRL_2 = 0x02 TRX_CTRL_2 = 0x03		250 500 1000 2000		kBit/s kBit/s kBit/s kBit/s	
E∨M	conducted	6.5	7.5	10.5	%	

¹ Operating the transmitter at channel 11 to 25 requires a duty cycle \leq 35% and channel 26 requires a duty cycle \leq 15% to fulfil all requirements according to FCC Part 15 Subpart C § 15.209. See **Section 4.5** for further information.

Table 4-7: Radio data of deRFmega128-22M12

Radio (Supply voltage VCC = 3.3 V)						
	Parameter / feature	Min	Тур	Max	Unit	
RF pad	Impedance		50		Ω	
	Diversity		Yes			
Range	Line of sight Tripod height 1.5m TX_PWR = 0x0 Antenna external = 5dBi Gain		1000		m	
	Line of sight Tripod height 1.5m TX_PWR = 0xF Antenna external = 5dBi Gain		500		m	
Frequency range		2405		2480	MHz	
Channels			16			
Max. Transmitting power conducted ^{2,3}	TX_PWR = 0x0 VCC = 3.3 V	21.4	21.9	22.4	dBm	
Receiver sensitivity	Data Rate = 250 kBit/s Data Rate = 500 kBit/s Data Rate = 1000 kBit/s Data Rate = 2000 kBit/s		-105 -100 -98 -91		dBm dBm dBm dBm	
Data rate (gross)	TRX_CTRL_2 = 0x00 TRX_CTRL_2 = 0x01 TRX_CTRL_2 = 0x02 TRX_CTRL_2 = 0x03		250 500 1000 2000		kBit/s kBit/s kBit/s kBit/s	
E∨M	conducted	6.5	7.5	9.5	%	

² Only applicable for EU: The maximum allowed TX_PWR register setting of deRFmega128-22M12 is TX_PWR = 0x0E. According to EN 300 328 clause 4.3.1 the maximum transmit power is restricted to a limit of +10dBm. ³ Only applicable for US: Operating the transmitter at channel 11, 12, 13, 23, 24, 25 and 26 requires to

³ Only applicable for US: Operating the transmitter at channel 11, 12, 13, 23, 24, 25 and 26 requires to ensure a reduced output power and/or duty cycle limit to fulfil all requirements according to FCC Part 15 Subpart C § 15.209. See **Section 4.3**.

Radio 2.4 GHz (Supply voltage VCC = 3.3 V) ⁴								
	Parameter / feature	Min Typ		Max	Unit			
Antenna	Туре	С	hip cerar	nic				
	Gain		-0.7		dBi			
	Diversity		No					
RF Pad	Impedance		50		Ω			
Range	Line of sight Tripod height 1.5m TX_PWR = 0x0	200			m			
Frequency range ⁵	PHY_CC_CCA = 0x0B0x1A	2405		2480	MHz			
	Parameter / feature	Min	Тур	Max	Unit			
Channels	PHY_CC_CCA = 0x0B0x1A	16						
Max. Transmitting power conducted	TX_PWR = 0x0 VCC = 3.3 V	3.6	3.7	3.8	dBm			
Receiver sensitivity	Data Rate = 250 kBit/s Data Rate = 500 kBit/s Data Rate = 1000 kBit/s Data Rate = 2000 kBit/s		-99 -95 -93 -87		dBm dBm dBm dBm			
Data rate (gross)	TRX_CTRL_2 = 0x00 TRX_CTRL_2 = 0x01 TRX_CTRL_2 = 0x02 TRX_CTRL_2 = 0x03		250 500 1000 2000		kBit/s kBit/s kBit/s kBit/s			
EVM	conducted		~8		%			

⁴ Values are not validated. ⁵ Operating the transmitter at channel 26 requires a duty cycle ≤25% to fulfil all requirements according to FCC Part 15 Subpart C § 15.209.

Table 4-9: Radio data of deRFmega256-23M12

Radio (Supply voltage VCC = 3.3 V) ⁶								
	Parameter / feature	Min	Тур	Max	Unit			
RF pad	Impedance		50		Ω			
	Diversity		Yes					
Range	Line of sight Tripod height 1.5m TX_PWR = 0x0 Antenna external = 5dBi Gain		1000		m			
	Line of sight Tripod height 1.5m TX_PWR = 0xF Antenna external = 5dBi Gain		500		m			
Frequency range ⁷		2405		2480	MHz			
Channels ⁷			16					
Max. Transmitting power conducted ^{8,9}	TX_PWR = 0x0 VCC = 3.3 V	22.2	22.5	22.8	dBm			
Receiver sensitivity	Data Rate = 250 kBit/s Data Rate = 500 kBit/s Data Rate = 1000 kBit/s Data Rate = 2000 kBit/s		-105 -101 -99 -94		dBm dBm dBm dBm			
Data rate (gross)	TRX_CTRL_2 = 0x00 TRX_CTRL_2 = 0x01 TRX_CTRL_2 = 0x02 TRX_CTRL_2 = 0x03		250 500 1000 2000		kBit/s kBit/s kBit/s kBit/s			
EVM	conducted		~7		%			

⁶ Values are not validated.

⁷ Channel 26 must be deactivated for using the radio module in USA with an external antenna to fulfill

the band edge requirements of FCC Part 15 Subpart C § 15.247. ⁸ Only applicable for EU: The maximum allowed TX_PWR register setting of deRFmega128-22M12 is TX_PWR = 0xF. According to EN 300 328 clause 4.3.1 the maximum transmit power is restricted to a limit of +10dBm.

⁹ Only applicable for US: Operating the transmitter requires to ensure a reduced output power limit to fulfil all requirements according to FCC Part 15 Subpart C § 15.209. See Section 4.3. Additionally activation of the 'PLL_TX_FLT' register is assumed.

4.1. TX Power register settings for deRFmega128-22M00 and 22M10

The diagrams in **Figure 7** and **Figure 8** are showing the current consumption and conducted output power during transmission depending on the TX_PWR register setting and the supply voltage. The values are valid for deRFmega128-22M00 and 22M10.

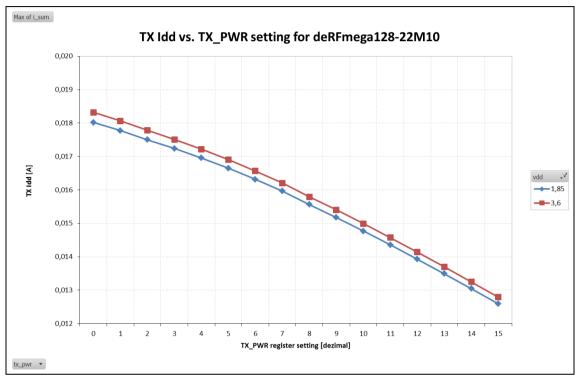


Figure 7: TX Idd vs. TX_PWR for deRFmega128-22M00 / 22M10

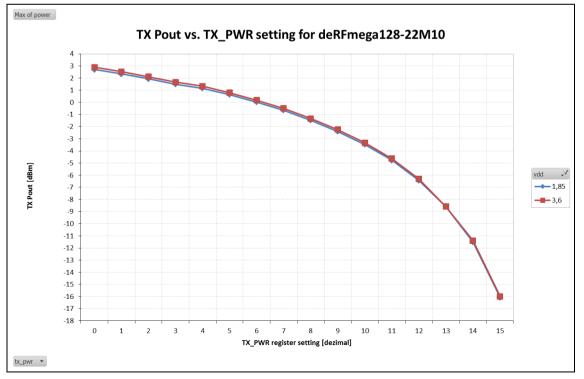


Figure 8: TX Pout vs. TX_PWR for deRFmega128-22M00 / 22M10

4.2. TX Power register settings for deRFmega128-22M12

The diagrams in **Figure 9** and **Figure 10** showing the current consumption and conducted output power during transmission depending on the TX_PWR register setting and the supply voltage. The values are valid for deRFmega128-22M12.

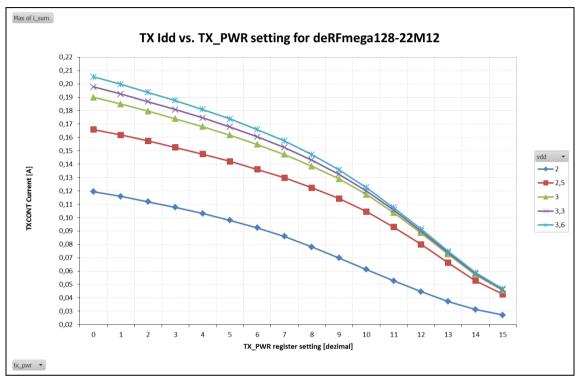


Figure 9: TX Idd vs. TX_PWR for deRFmega128-22M12

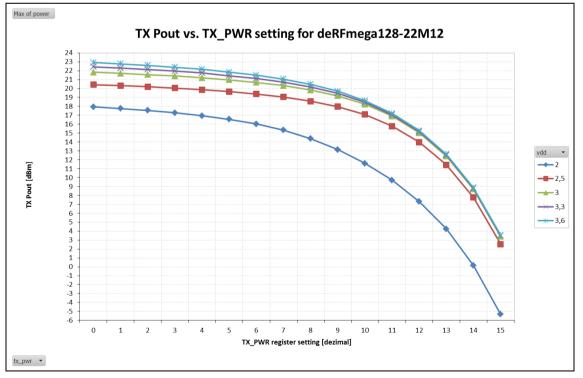


Figure 10: TX Pout vs. TX_PWR for deRFmega128-22M12

4.3. TX Power register settings for deRFmega256-23M00 and 23M10

The diagrams in **Figure 11** and **Figure 12** are showing the current consumption and conducted output power during transmission depending on the TX_PWR register setting and the supply voltage. The values are valid for deRFmega256-23M00 and 23M10.

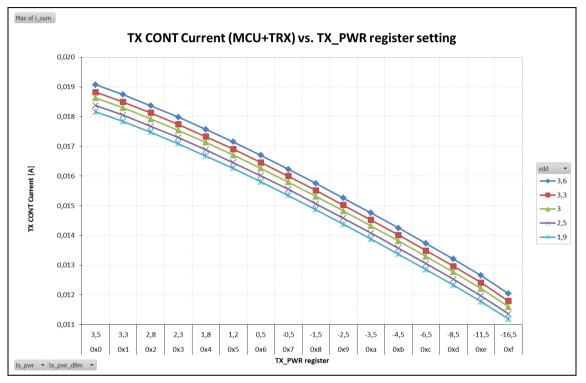


Figure 11: TX Idd vs. TX_PWR for deRFmega256-23M00 / 23M10

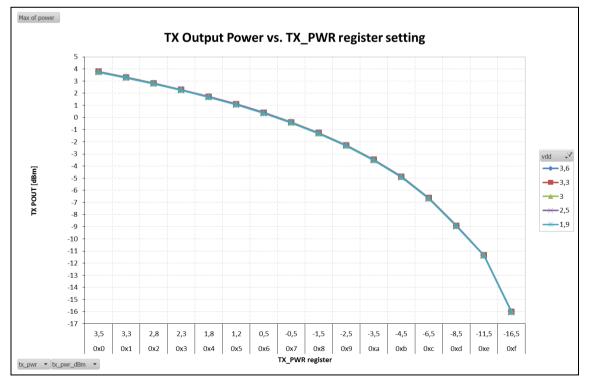


Figure 12: TX Pout vs. TX_PWR for deRFmega256-23M00 / 23M10

4.4. TX Power register settings for deRFmega256-23M12

The diagrams in **Figure 13** and **Figure 14** showing the current consumption and conducted output power during transmission depending on the TX_PWR register setting and the supply voltage. The values are valid for deRFmega256-23M12.

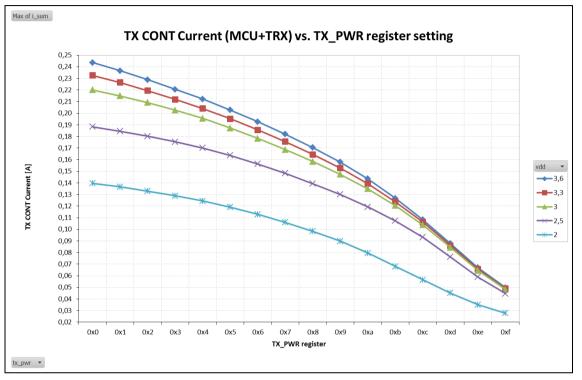


Figure 13: TX Idd vs. TX_PWR for deRFmega256-23M12

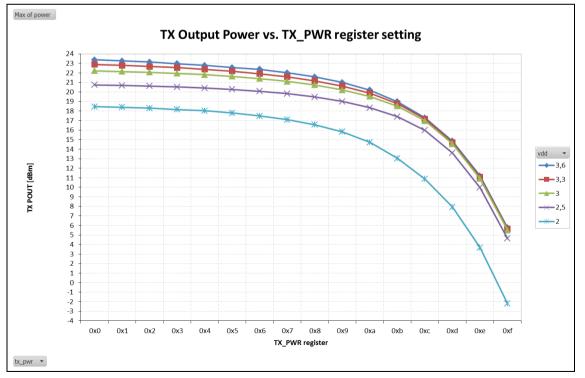


Figure 14: TX Pout vs. TX_PWR for deRFmega256-23M12

4.5. Output power and duty cycle settings for deRFmega128-22M00

The radio module deRFmega128-22M00 must observe the duty cycle settings to be compliant with all FCC regulatory requirements.

The requirements are a duty cycle which is $\leq 15\%$ for channel 26 operation and $\leq 36\%$ for the remaining channels. The duty cycle is related to a period of 100 ms, where the given value defines the TX-ON time. That means, the maximum allowed TX-ON time is 15 ms within a period of 100 ms for channel 26 and 36 ms for all other channels respectively.

The available default firmware for the radio modules is a 'Wireless UART' (WUART) that transmits wireless data inputs from one node to another. The WUART packets length including overhead ranges from 12 to 127 bytes. All radio protective systems like automated acknowledgement, CSMA-CA and frame-retry are activated. Therefore sending a packet with maximum length takes approximately 4 ms to from start to end of transmission. Before each transmission, a fixed delay time of 30 ms is defined, to ensure that the available maximum packet length is used. This optimizes the energy performance of the radio module, because not every single data input will be transmitted separately. The fixed delay time cannot be changed by software. By default, the WUART firmware operates at channel 20 which also cannot be changed by the user.

Table 4-10 shows a worst case scenario of data transmission with maximum packet length of 127 bytes. The data input will be buffered within the 30 ms delay and then transmitted. The CSMA-CA wait time is assumed to be zero. Here, the RX-ON time of receiving the automated acknowledgement after each transmission is ignored. The transition will be continued until all data inputs are successfully transmitted. Therefore, the resulting duty cycle is \leq 12% and fulfills the FCC requirements for all channels.

Data transmission timeline								
Operation State	buffer input	transmit data	buffer input	transmit data	buffer input	transmit data	buffer input	
	data		data		data		data	
TX State	OFF	ON	OFF	ON	OFF	ON	OFF	
Duration [ms]	30	4	30	4	30	4	30	
Time [ms]	0	30	34	64	68	98	102	
	30	34	64	68	98	102	132	

Table 4-10: Timeline

To fulfill all requirements of Industry Canada (RSS-247, Issue 2, February 2017) the radio module deRFmega128-22M00 must be set to the TX power settings 0x6 (0dBm) from channel 11 up to channel 26.

4.6. Output power and channel settings for power amplified radio modules

The radio modules deRFmega128-22M12 and deRFmega256-23M12 are able to provide an output power greater than 20 dBm. **Table 4-11** defines the necessary power settings of the TX_PWR register **[1]** and **[2]**, which must be set to fulfill all national requirements of Europe (EN 300 328) and the United States (CFR 47 Ch. I FCC Part 15).

- **Note 1:** Furthermore activate the transceiver register 'PLL_TX_FLT' of deRFmega256-23M12 to be compliant to FCC Part 15 Subpart C § 15.247.
- **Note 2:** Channel 26 must be deactivated for using the radio module with an external antenna in the United States to fulfill the band edge requirements of FCC Part 15 Subpart C § 15.247. This restriction is only valid for external antenna usage. A chip antenna design is fully compliant with all channel requirements.

Device	d	eRFmega	128-22M12	d	leRFmega	256-23M12
Region	ETSI (EU)		FCC (US)	ETSI (EU)		FCC (US)
RFOUT	all	Chip antenna	Coax and external antenna	all	Chip antenna	Coax and external antenna
11	0xF	0xD	0xD	0xF	0xD	0xD
12	0xF	0xA	0xB	0xF	0xA	0xB
13	0xF	0xA	0xB	0xF	0xA	0xB
14	0xF	0xA	0xB	0xF	0xA	0xB
15	0xF	0xA	0xB	0xF	0xA	0xB
16	0xF	0xA	0xB	0xF	0xA	0xB
17	0xF	0xA	0xB	0xF	0xA	0xB
18	0xF	0xA	0xB	0xF	0xA	0xB
19	0xF	0xA	0xB	0xF	0xA	0xB
20	0xF	0xA	0xB	0xF	0xA	0xB
21	0xF	0xA	0xB	0xF	0xA	0xB
22	0xF	0xA	0xB	0xF	0xA	0xB
23	0xF	0xA	0xB	0xF	0xA	0xB
24	0xF	0xD	0xD	0xF	0xD	0xD
25	0xF	0xF	0xF	0xF	0xF	0xF
26	0xF	0xF	Not used	0xF	0xF	Not used

4.7. Fuse setting

Table 4-12 shows the recommended fuse byte settings for the deRFmega radio modules. Please refer to the microcontroller user manuals **[1]** and **[2]** for their detailed description and alternative configurations.

Table 4-12: Extended fuse bytes

Fuse bytes	Setting	Description
EXTENDED	0xFE	Extended fuse byte
HIGH	0x91	Fuse high byte
LOW	0xCE	Fuse low byte

Figure 15 shows the recommended fuse setting of the AVR microcontroller in Atmel Studio[™]. Following fuses should be activated:

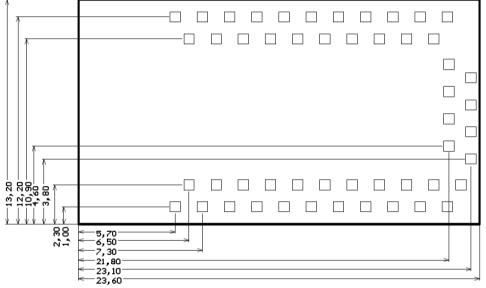
- BODLEVEL: Brown-out detection at supply voltage of 1.8 V.
- JTAGEN: The JTAG programming interface is enabled after start-up. Should be deactivated¹⁰ to prevent memory access from end-user.
- SPIEN: The serial programming interface is enabled after start-up. Should be deactivated¹⁰ to prevent memory access from end-user.
- EESAVE: The EEPROM data will be preserved by the chip erase cycle. This will protect the internal MAC-ID from unintended erasing after a firmware update.
- CKSEL_SUT: The selected clock source is the transceiver oscillator. This ensures a more precise MCU clock over the whole working temperature range.

AVR Dragon (00A2	00006766) -	Device Programming				? 🛛
Tool Dev	ice	Interface	Device signature	Targel	: Voltage	
AVR Dragon 🔽 🛛 AT	mega128RFA1	🔻 JTAG 🔽 Apply	0×1EA701	Read 3.3	V Read	Ö
Interface settings Tool information Device information Memories Fuses Lock bits Production file	Fuse Name BODLEVEL OCDEN JTAGEN SPIEN WDTON EESAVE BOOTSZ BOOTST CKDIVB COURT	Value 1V8 V 4096W_F000 V				
	CKOUT	Value				
	EXTENDED HIGH LOW	0xFE 0x91 0xCE				
	Auto read	programming		Program	Copy Verify	to clipboard Read
Starting operation verif Verify register EXTENDE Verify register HIGHC Verify register LOWC Verify registersOK	EDOK XK					
💽 Verify register	'sOK					
						Close

Figure 15: Fuse setting

¹⁰ Attention: No fuse and memory access via JTAG and ISP is possible if JTAGEN and SPIEN fuses are deactivated!

5. Mechanical size


The following sections show the mechanical dimensions of the different radio modules. All distances are given in millimeters.

5.1. STEP model library

dresden elektronik offers a STEP model library with all available OEM radio modules for CAD design tools **[15]**.

5.2. deRFmega128-22M00 and deRFmega256-23M00

The module has a size of $23.6 \times 13.2 \text{ mm}$ and a height of 3.0 mm. The LGA pads are arranged in a double row design. **Figure 16** shows the details from top view.

Signal pad dimension: 0,6 × 0,6 mm (square)

Figure 16: Module dimension and signal pads geometry (top view)

5.3. deRFmega128-22M10 and deRFmega256-23M10

The module has a size of 19.0 x 13.2 mm and a height of 3.0 mm. The LGA pads are arranged in a double row design. The RF pads consist of three ground pads and one signal pad. **Figure 17** and **Figure 18** show the details from top view.

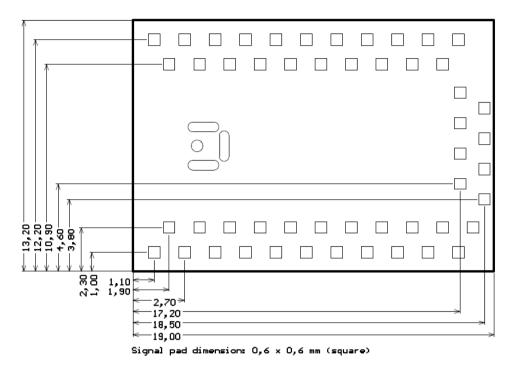


Figure 17: Module dimension and signal pad geometry (top view)

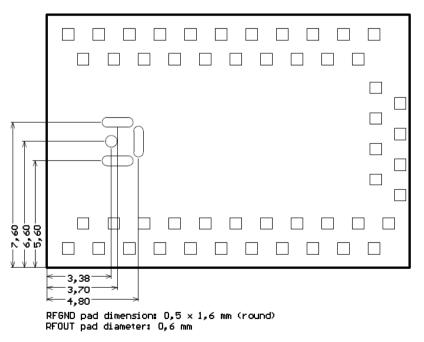


Figure 18: RF pad geometry (top view)

5.4. deRFmega128-22M12 and deRFmega256-23M12

The module has a size of 21.5 x 13.2 mm and a height of 3.0 mm. The LGA pads are designed in a zigzag structure. The RF pads consist of six ground pads and two signal pads. **Figure 19** and **Figure 20** show the details from top view.

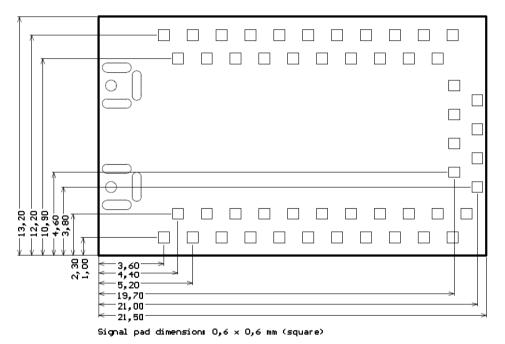


Figure 19: Module dimension and signal pad geometry (top view)

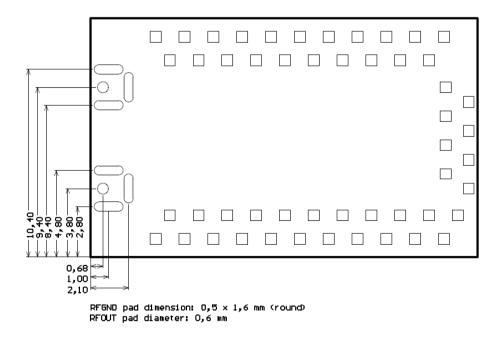


Figure 20: RF pad geometry de (top view)

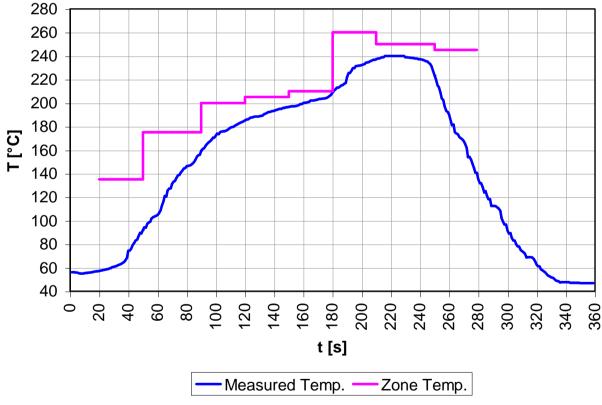

6. Soldering profile

Table 6-1 shows the recommended soldering profile for the radio modules.

Table 6-1: Soldering Profile

Profile Feature	Values
Average-Ramp-up Rate (217°C to Peak)	3°C/s max
Preheat Temperature 175°C ±25°C	180 s max
Temperature Maintained Above 217°C	60 s to 150 s
Time within 5°C of Actual Peak Temperature	20 s to 40 s
Peak Temperature Range	260°C
Ramp-down Rate	6°C/s max
Time 25°C to Peak Temperature	8 min max

Figure 21 shows a recorded soldering profile for a radio module. The blue colored line illustrates a temperature sensor placed next to the soldering contacts of the radio module. The pink line shows the set temperatures depending on the zone within the reflow soldering machine.

Figure 21: Recorded soldering profile

A solder process without supply of nitrogen causes a discoloration of the metal RF-shielding. It is possible that the placed label shrinks due the reflow process.

7. Pin assignment

The LGA pads provide all signals to the customer: power supply, peripheral, programming, debugging, tracing, analog measurement, external front-end control, antenna diversity control and free programmable ports. All provided signals except VCC, DGND, RSTN, RSTON, AREF, AVDDOUT and CLKI are free programmable port pins (GPIO).

7.1. Signals of deRFmega128-22M00 and deRFmega256-23M00

The radio modules deRFmega128-22M00 and deRFmega256-23M00 have 51 LGA pads. The '1' marking is shown in **Figure 23**. Consider that the pin numbering in **Figure 24** is shown from top view. All available LGA pads are listed in **Table 7-1**.

Antenna

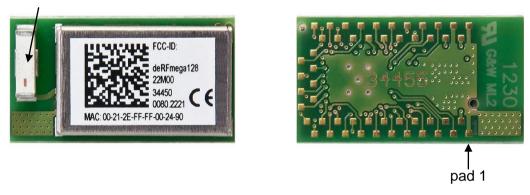
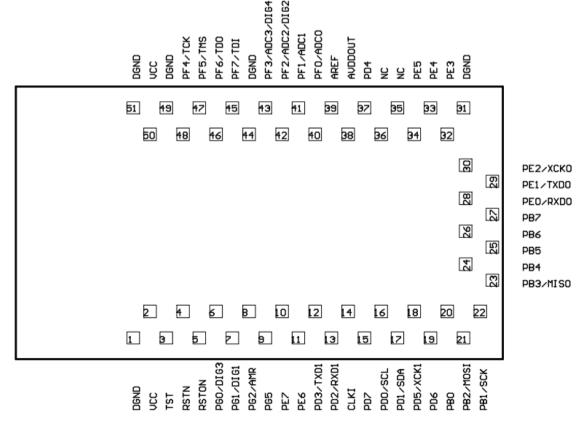
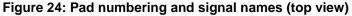




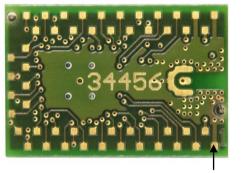
Figure 22: deRFmega128-22M00 (top view) Figure 23: deRFmega128-22M00 (bottom view)

I/O port pin mapping LGA MCU Primary Alternate functions Comments Pad Pin function 1 GND -1.8 V to 3.6 V VCC 2 _ 3 11 TST Must be connected to GND! 4 12 RSTN Reset 5 13 **RSTON** Reset output 6 14 PG0 DIG3 PG1 7 15 DIG1 8 16 PG2 AMR 40 DOF 0000 ~

Table 7-1: I/O port pin to LGA pad mapping for deRFmega128-22M00 and deRFmega256-23M00

9	19	PG5	OC0B			
10	53	PE7	ICP3	INT7	CLKO	
11	52	PE6	Т3	INT6		Timer3
12	28	PD3	TXD1	INT3		UART1
13	27	PD2	RXD1	INT2		UART1
14	33	CLKI				External clock input
15	32	PD7		Т0		
16	25	PD0	SCL	INT0		тwi
17	26	PD1	SDA	INT1		тwi
18	30	PD5		XCK1		
19	31	PD6		T1		Timer1
20	36	PB0	SS		PCINT0	SPI
21	38	PB2	MOSI	PDI	PCINT2	SPI, ISP
22	37	PB1	SCK		PCINT1	SPI
23	39	PB3	MISO	PDO	PCINT3	SPI, ISP
24	40	PB4		OC2A	PCINT4	
25	41	PB5		OC1A	PCINT5	
26	42	PB6		OC1B	PCINT6	
27	43	PB7	OC0A	OC1C	PCINT7	
28	46	PE0	RXD0		PCINT8	UART0
29	47	PE1	TXD0			UART0
30	48	PE2	XCK0	AIN0		UART0
31	-	GND				

32	49	PE3	OC3A	AIN1		
33	50	PE4	OC3B	INT4		
34	51	PE5	OC3C	INT5		
35	-	NC				Leave unconnected
36	-	NC				Leave unconnected
37	29	PD4		ICP1		
38	60	AVDDOUT				Leave unconnected if unused (1.8 V TRX Voltage Output) Internal 1uF capacitor
39	62	AREF				No internal capacitor assembled
40	63	PF0	ADC0			ADC
41	64	PF1	ADC1			ADC
42	1	PF2	ADC2	DIG2		ADC
43	2	PF3	ADC3	DIG4		
44	-	GND				
45	6	PF7	ADC7		TDI	JTAG
46	5	PF6	ADC6		TDO	JTAG
47	4	PF5	ADC5		TMS	JTAG
48	3	PF4	ADC4		тск	JTAG
49	-	GND				
50	-	VCC				1.8 V to 3.6 V
51	-	GND				


Note: PG4/TOSC1 and PG3/TOSC2 are connected to a 32.768 kHz crystal internally.

7.2. Signals of deRFmega128-22M10 and deRFmega256-23M10

The radio modules deRFmega128-22M10 and deRFmega256-23M10 have 55 LGA pads. The '1' marking is shown in **Figure 26**. Consider that the pin numbering in **Figure 27** is shown from top view. All LGA pads are listed in **Table 7-2**.

RFOUT

pad 1

Figure 25: deRFmega128-22M10 (top view)

Figure 26: deRFmega128-22M10 (bottom view)

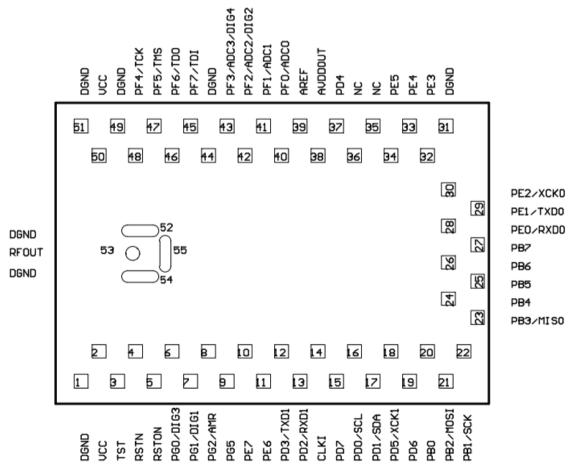


Figure 27: Pad numbering and signal names (top view)

Table 7-2: I/O port pin to LGA pad mapping for deRFmega128-22M10 and deRFmega256-23M10

I/O port pin mapping								
LGA Pad	MCU Pin	Primary function	Alternate	Alternate functions		Comments		
1	-	GND						
2	-	VCC				1.8 V to 3.6 V		
3	11	TST				Must be connected to GND!		
4	12	RSTN				Reset		
5	13	RSTON				Reset output		
6	14	PG0		DIG3		External front-end control		
7	15	PG1		DIG1		External diversity control		
8	16	PG2	AMR					
9	19	PG5	OC0B					
10	53	PE7	ICP3	INT7	CLKO			
11	52	PE6	Т3	INT6		Timer3		
12	28	PD3	TXD1	INT3		UART1		
13	27	PD2	RXD1	INT2		UART1		
14	33	CLKI				External clock input		
15	32	PD7		то				
16	25	PD0	SCL	INT0		тwi		
17	26	PD1	SDA	INT1		тwi		
18	30	PD5		XCK1				
19	31	PD6		T1		Timer1		
20	36	PB0	SS		PCINT0	SPI		
21	38	PB2	MOSI	PDI	PCINT2	SPI, ISP		
22	37	PB1	SCK		PCINT1	SPI		
23	39	PB3	MISO	PDO	PCINT3	SPI, ISP		
24	40	PB4		OC2A	PCINT4			
25	41	PB5		OC1A	PCINT5			
26	42	PB6		OC1B	PCINT6			
27	43	PB7	OC0A	OC1C	PCINT7			
28	46	PE0	RXD0		PCINT8	UART0		
29	47	PE1	TXD0			UART0		
30	48	PE2	XCK0	AIN0		UART0		
31	-	GND						

32	49	PE3	OC3A	AIN1		
33	50	PE4	OC3B	INT4		
34	51	PE5	OC3C	INT5		
35	-	NC				Leave unconnected
36	-	NC				Leave unconnected
37	29	PD4		ICP1		
38	60	AVDDOUT				Leave unconnected if unused (1.8 V TRX Voltage Output) Internal 1uF capacitor
39	62	AREF				No internal capacitor assembled
40	63	PF0	ADC0			ADC
41	64	PF1	ADC1			ADC
42	1	PF2	ADC2	DIG2		ADC
43	2	PF3	ADC3	DIG4		External front-end control
44	-	GND				
45	6	PF7	ADC7		TDI	JTAG
46	5	PF6	ADC6		TDO	JTAG
47	4	PF5	ADC5		TMS	JTAG
48	3	PF4	ADC4		тск	JTAG
49	-	GND				
50	-	VCC				1.8 V to 3.6 V
51	-	GND				
52	-	RFGND				
53	-	RFOUT				50 Ω impedance
54	-	RFGND				
55	-	RFGND				
		•			•	

Note: PG4/TOSC1 and PG3/TOSC2 are internally connected to a 32.768 kHz crystal.

7.2.1. External front-end and antenna diversity control

The radio modules deRFmega128-22M10 and deRFmega256-23M10 offer the possibility to control external front-end components and to support antenna diversity. **Table 7-3** and **Table 7-4** show the logic values of the control signals. A logic '0' is specified with a voltage level of 0 V to 0.3 V. A logic '1' is specified with a value of VCC - 0.3 V to 3.6 V.

An application circuit is shown in **Section 10.5**.

Antenna Diversity

The antenna diversity algorithm is enabled with setting bit ANT_DIV_EN=1 in the ANT_DIV register. The external control of RF switches must be enabled by bit ANT_EXT_SW_EN of the same register. This action will configure the pins DIG1 and DIG2 as outputs. Both pins are used to feed the RF switch signal and its inverse to the differential inputs of the RF switch. Please refer to ATmega128RFA1 [1] and ATmega256RFR2 [2] datasheet to get information to all register settings.

Mode description	PG1/DIG1	PF2/DIG2		
TRX off Sleep mode	Disable register bit ANT_EXT_SW_EN and set port pins DIG1 and DIG2 to output low via I/O port control registers. This action could reduce the power consumption of an external RF switch.			
ANT0	1	0		
ANT1	0	1		

Front End

The control of front-end components can be realized with the signals DIG3 and DIG4. The function will be enabled with bit PA_EXT_EN of register TRX_CTRL_1 which configures both pins as outputs. While transmission is turned off DIG3 is set to '0' and DIG4 is set to '1'. When the transceiver starts transmission the polarity will be changed. Both pins can be used to control PA, LNA and RF switches. Please refer to ATmega128RFA1 **[1]** and ATmega256RFR2 **[2]** datasheet to get information to all register settings.

Table 7-4: Front-end control	
------------------------------	--

Mode description	PG0/DIG3	PF3/DIG4		
TRX off Sleep mode	Disable register bit PA_EXT_EN and set port pins DIG3 and DIG4 to output low via I/O port control registers. This action may reduce the power consumption of external front-end devices.			
TRX off	0	1		
TRX on	1	0		

Sleep mode

To optimize the power consumption of external front-end components, it is possible to use a dedicated GPIO to set the PA into sleep mode, if applicable or to switch an additionally MOSFET, which supplies the PA.

7.3. Signals of deRFmega128-22M12 and deRFmega256-23M12

The radio modules deRFmega128-22M12 and deRFmega256-23M12 have 59 LGA pads. The '1' marking is shown in **Figure 29**. Consider that the pin numbering in **Figure 30** is shown from top view. All LGA pads are listed in **Table 7-5**.

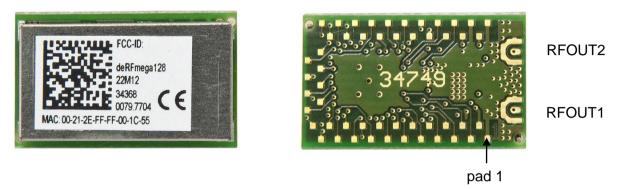
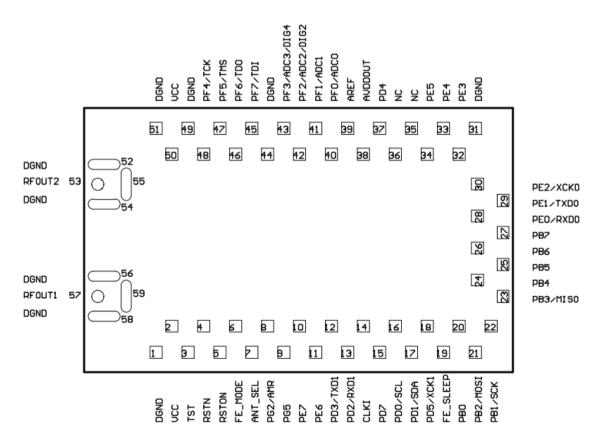
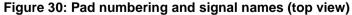




Figure 28: deRFmega128-22M12 (top view)

Figure 29: deRFmega128-22M12 (bottom view)

Table 7-5: I/O port pin to LGA pad mapping for deRFmega128-22M12 and deRFmega256-23M12

I/O port pin mapping							
LGA Pad	MCU Pin	Primary function	Alternate functions		S	Comments	
1	-	GND					
2	-	VCC				2.0 V to 3.6 V	
3	11	TST				Must be connected to GND!	
4	12	RSTN				Reset	
5	13	RSTON				Reset output	
6	14	PG0		DIG3		Leave unconnected Internal connected to PA-CTX ¹¹	
7	15	PG1		DIG1		Leave unconnected Internal connected to PA-ANTSEL ¹¹	
8	16	PG2	AMR				
9	19	PG5	OC0B				
10	53	PE7	ICP3	INT7	CLKO		
11	52	PE6	Т3	INT6		Timer3	
12	28	PD3	TXD1	INT3		UART1	
13	27	PD2	RXD1	INT2		UART1	
14	33	CLKI				External clock input	
15	32	PD7		ТО			
16	25	PD0	SCL	INT0		TWI	
17	26	PD1	SDA	INT1		TWI	
18	30	PD5		XCK1			
19	31	PD6		T1		Leave unconnected Internal connected to PA-CSD ¹¹	
20	36	PB0	SS		PCINT0	SPI	
21	38	PB2	MOSI	PDI	PCINT2	SPI, ISP	
22	37	PB1	SCK		PCINT1	SPI	
23	39	PB3	MISO	PDO	PCINT3	SPI, ISP	
24	40	PB4		OC2A	PCINT4		
25	41	PB5		OC1A	PCINT5		
26	42	PB6		OC1B	PCINT6		
27	43	PB7	OC0A	OC1C	PCINT7		
28	46	PE0	RXD0		PCINT8	UART0	

¹¹ See Section 7.3.1

29	47	PE1	TXD0			UART0
30	48	PE2	XCK0	AIN0		UART0
31	-	GND				
32	49	PE3	OC3A	AIN1		
33	50	PE4	OC3B	INT4		
34	51	PE5	OC3C	INT5		
35	-	NC				Leave unconnected
36	-	NC				Leave unconnected
37	29	PD4		ICP1		
38	60	AVDDOUT				Leave unconnected if unused (1.8 V TRX Voltage Output) Internal 1 uF capacitor
39	62	AREF				No internal capacitor assembled
40	63	PF0	ADC0			ADC
41	64	PF1	ADC1			ADC
42	1	PF2	ADC2	DIG2		Leave unconnected
43	2	PF3	ADC3	DIG4		Leave unconnected
44	-	GND				
45	6	PF7	ADC7		TDI	JTAG
46	5	PF6	ADC6		TDO	JTAG
47	4	PF5	ADC5		TMS	JTAG
48	3	PF4	ADC4		тск	JTAG
49	-	GND				
50	-	VCC				2.0 V to 3.6 V
51	-	GND				
52	-	RFGND				
53	-	RFOUT2				50 Ω impedance*
54	-	RFGND				
55	-	RFGND				
56	-	RFGND				
57	-	RFOUT1				50 Ω impedance*
58	-	RFGND				
59	-	RFGND				

Note: PG4/TOSC1 and PG3/TOSC2 are internally connected to a 32.768 kHz crystal.

*) If one of both RFOUT pads of the radio modules deRFmega128-22M12 / 23M12 is unused, it must be terminated with 50 ohms to ground. This action ensures the proper function of the internal power amplifier and will reduce the power consumption.

7.3.1. Internal front-end control

The front end of deRFmega128-22M12 and deRFmega256-23M12 has an internal PA for transmit and a LNA for receive mode. An additionally antenna diversity feature is usable to select the antenna with the best link budget. The front-end control includes three MCU port pins (**Figure 31**). They are used to choose the TX/RX antenna, de-/activate transmit and receive mode and de-/activate the sleep mode. **Table 7-6** and **Table 7-7** show the logic values. A logic '0' is specified with a voltage level of 0 V to 0.3 V. A logic '1' is specified with a value of VCC - 0.3 V to 3.6 V. The control signals DIG1, DIG3 and PD6 are available on the LGA pins.

Mode description	PG1/DIG1	PD6/T1	PG0/DIG3
	PA_ANT SEL	PA_CSD	PA_CTX
All off (sleep mode)	х	0	0
RX LNA mode	Х	1	0
TX mode	Х	1	1

Mode description	PG1/DIG1	PD6/T1	PG0/DIG3
	PA_ANT SEL	PA_CSD	PA_CTX
RFOUT1 port enabled	0	Х	Х
RFOUT2 port enabled	1	Х	Х

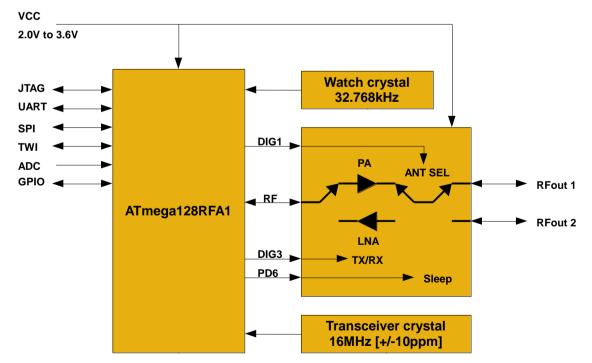


Figure 31: Block diagram of front-end functionality and control

Note: Do not leave any unused RFOUT pad unterminated! Leave pins DIG1, DIG2, DIG3, DIG4 and PD6 unconnected to ensure the proper front-end functionality!

7.4. Signal description

The available signals are described in **Table 7-8**. Please refer to ATmega128RFA1 **[1]** and ATmega256RFR2 **[2]** datasheet for more information of all dedicated signals.

Table 7-8: Signal description list

Signal name	Function	Туре	Active Level	Comments					
Power									
VCC	Voltage Regulator Power Supply Input	Power							
GND		Ground							
Clocks and Osc	Clocks and Oscillators								
CLKI	External Clock Input	Input							
CLKO	Divided System Clock Output	Output							
JTAG									
ТСК	Test Clock	Input		No pull-up resistor on module					
TDI	Test Data In	Input		No pull-up resistor on module					
TDO	Test Data Out	Output							
TDM	Test Mode Select	Input		No pull-up resistor on module					
Serial Program	ning								
PDI	Data Input	Input							
PDO	Data Output	Output							
SCK	Serial Clock	Input							
Reset									
RSTN	Microcontroller Reset	I/O	Low	Pull-Up resistor ¹²					
USART									
TXD0 – TXD1	Transmit Data								
RXD0 – RXD1	Receive Data								
XCK0 – XCK1	Serial Clock								
Timer/Counter a	Timer/Counter and PWM Controller								
OC0A-OC3A	Output Compare and PWM Output A for Timer/Counter 0 to 3								
OC0B-OC3B	Output Compare and PWM Output B for Timer/Counter 0 to 3								

¹² Internal MCU Pull-up resistor

OC0C-OC3C	Output Compare and PWM Output C for Timer/Counter 0 to 3			
T0, T1, T3	Timer/Counter 0,1,3 Clock Input	Input		
ICP1 ICP3	Timer/Counter Input Capture Trigger 1 and 3	Input		
Interrupt		F		
PCINT0 – PCINT7	Pin Change Interrupt Source 0 to 7	Output		
INTO – INT7	External Interrupt Input 0 to7	Input		
SPI		1		
MISO	SPI Master In/Slave Out	I/O		
MOSI	SPI Master Out/Slave In	I/O		
SCK	SPI Bus Serial Clock	I/O		
SSN	SPI Slave Port Select	I/O		
Two-Wire-Interf	ace			
SDA	Two-Wire Serial Interface Data	I/O		No pull-up resistor ¹³
SCL	Two-Wire Serial Interface Clock	I/O		No pull-up resistor ¹³
Analog-to-Digita	al Converter			
ADC0 – ADC7	Analog to Digital Converter Channel 0 to 7	Analog		
AREF	Analog Reference	Analog		
AVDDOUT	1.8 V Regulated Analog Supply Voltage Output from Transceiver	Analog		Leave unconnected if unused
Analog Compar	ator			
AIN0	Analog Comparator Positive Input	Analog		
AIN1	Analog Comparator Negative Input	Analog		
Radio Transceiv	/er			
DIG1/DIG2	Antenna Diversity Control Output			Set to output by
DIG3/DIG4	External Front-End control	Output		register command

¹³ External 4k7 pull-up resistors necessary for proper Two-Wire-Interface functionality

8. PCB design

The PCB design of a radio module base board is important for a proper performance of peripherals and the radio. The next subsections give design hints to create a custom base board.

8.1. Technology

The described design has the main goal to use standard PCB technology to reduce the costs and cover a wider application range.

Design parameters

- 150 µm manufacturing process
- 4 layer PCB with FR4 Prepreg
- No via plugging
- Via hole size: 0.2 mm
- Via diameter: 0.6 mm

8.2. ECAD Libraries

dresden elektronik offers schematic and footprint libraries for all available radio modules for ECAD design software Altium Designer[®] [12] and Eagle[®] [13]. This allows a fast design-in of radio modules into a custom product.

8.3. Base board footprint

The footprint for a custom base board depends on the radio module used. The mechanical dimensions are shown in **Section 5**. The following part describes an example to design a base board.

Properties of stencil and solder paste

- Stencil = 130 µm thickness
- Lead free solder paste (particle size from 20 to 38 μm)

Properties of signal pads

- Signal pad dimension = 0.6 x 0.6 mm (rectangular, red)
- Signal pad cut-out on stencil = 0.6 x 0.6 mm (rectangular, grey)
- Clearance to solder stop = 0.1 mm (purple)

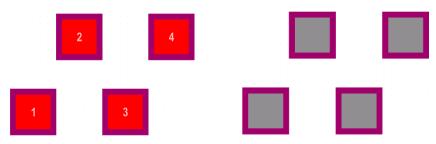


Figure 32: Signal pad footprint design

Properties of RF pads

- RF ground pad dimension = 1.6 x 0.5 mm (round, red)
- RF ground pad cut-out on stencil = 1.3 x 0.2 mm (round, grey)
- RF signal-out pad dimension = 0.6 x 0.6 mm (round, red)
- RF signal-out pad cut-out on stencil = 0.6 x 0.6 mm (round, grey)
- Clearance to solder stop = 0.1 mm (purple)

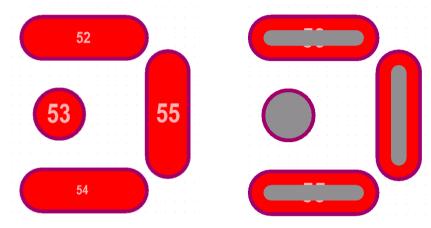


Figure 33: RF pad footprint design (top view)

8.3.1. Footprint of deRFmega128-22M00 and deRFmega256-23M00

Figure 34 shows an exemplary base board footprint for deRFmega128-22M00 and deRFmega256-23M00. Only the top layer (red) is visible. The mid and bottom layers are hidden. The rectangular signal pad copper area (red, not visible) and the paste dimension (grey) have the same size of 0.6×0.6 mm. The solder stop clearance (purple) has a value of 0.1 mm. Do not place copper on any other area among the entire module. Solder stop could be used everywhere.

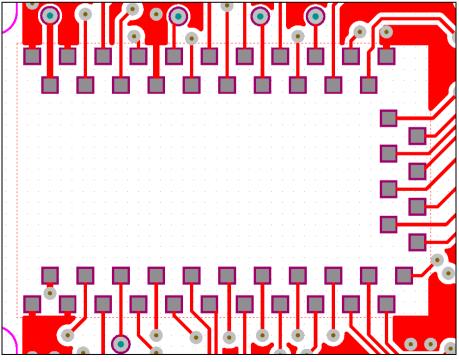


Figure 34: Exemplary base board footprint for 22M00 / 23M00 (top view)

8.3.2. Footprint of deRFmega128-22M10 and deRFmega256-23M10

The exemplary base board footprint for deRFmega128-22M10 and deRFmega256-23M10 is shown in **Figure 35**. The top layer (red) is visible, the mid and bottom layers are hidden. The rectangular signal pad copper area (red, not visible) and the paste dimension (grey) have the same size of 0.6×0.6 mm. The solder stop clearance (purple) has a value of 0.1 mm.

The RF ground pads are connected to each other and to the board ground to ensure a proper ground area. For the most applications it is not necessary to separate the RF ground from system ground. The RF ground area in **Figure 35** has a vertical dimension of 3.8 mm. The ground vias are not plugged. In this area are no other radio module signals. An unintentional short-circuit is therefore accepted. Do not place copper on any other area among the entire module. Solder stop could be used everywhere.

The RF trace design depends on the used base board and is described detailed in **Section 8.6.**

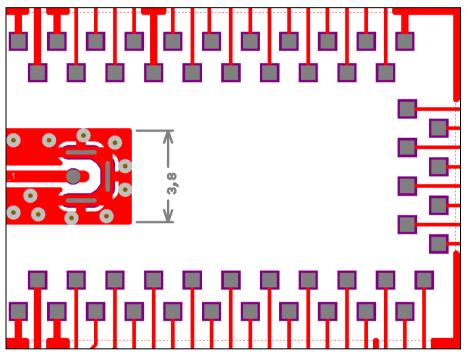


Figure 35: Exemplary base board footprint for 22M10 /23M10 (top view)

8.3.3. Footprint of deRFmega128-22M12 and deRFmega256-23M12

Figure 36 shows an exemplary base board footprint for deRFmega128-22M12 and deRFmega256-23M12. Only the top layer (red) is visible. The mid and bottom layers are hidden. The pad copper area (red, not visible) and the paste dimension (grey) have the same size of 0.6 x 0.6 mm. The solder stop clearance (purple) has a value of 0.1 mm.

The RF ground pads are connected to each other and to the board ground to ensure a proper ground area. For the most applications it is not necessary to separate the RF ground from system ground. The RF ground area in **Figure 36** has a vertical dimension of 9.4 mm. The ground vias are not plugged. In this area are no other radio module signals. An unintentional short-circuit is therefore accepted. Do not place copper on any other area among the entire module. Solder stop could be used everywhere.

The RF trace design depends on the used base board and is described detailed **Section 8.6**.

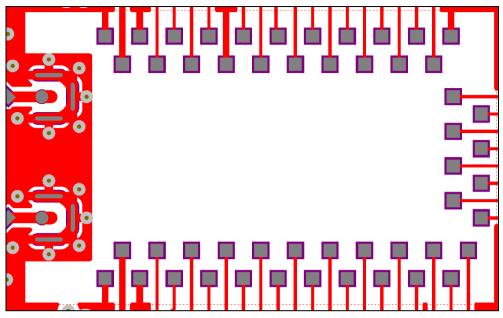


Figure 36: Exemplary base board footprint for 22M12 / 23M12 (top view)

8.4. Ground plane

The performance of RF applications mainly depends on the ground plane design. The often used chip ceramic antennas are very tiny, but they need a proper ground plane to establish a good radiation pattern. Every board design is different and cannot easily be compared to each other. Some practical notes for the ground plane design are described below:

- Regard to the design guideline of the antenna manufacturer
- Use closed ground planes on the PCB edges on top and bottom layer
- Connect the ground planes with lots of vias. Place it inside the PCB like a chessboard and on the edges very closely.

8.5. Layers

The use of 2 or 4 layer boards have advantages and disadvantages for the design of a custom base board.

2 Layer board	4 Layer board
(-) only 2 layers available for routing the traces and design a proper ground area	(+) 4 layers available for routing the traces and design a proper ground area
(-) only 1 layer available for routing the traces under the module	(+) 3 layers available for routing the traces under the module
(-) no separate VCC plane usable	(+) separate VCC plane usable
(+) cheaper than 4 layers	(-) more expensive than 2 layers

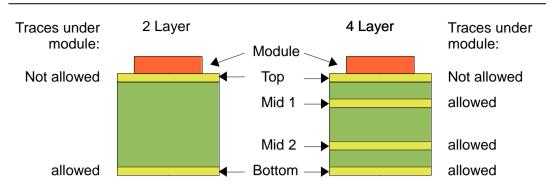


Figure 37: Layer design of 2 and 4 layer boards

8.6. Traces

Common signal traces should be designed with these guidelines:

- Traces on top layer are not allowed under the module (see Figure 37)
- Traces on mid layers and bottom layers are allowed (see Figure 37)
- Route traces straight away from module (see Figure 34)
- Do not use heat traps of components directly on the RF trace
- Do not use 90 degree corners. Better is 45 degree or rounded corners.

The trace design for RF signals has a lot of more important points to regard. It defines the trace impedance and therefore the signal reflection and transmission. The most commonly used RF trace designs are Microstrip and Grounded Coplanar Wave Guide (GCPW). The dimension of the trace is depending on the used PCB material, the height of the material to the next ground plane, a PCB with or without a ground plane, the trace width and for GCPW the gap to the top ground plane. The calculation is not trivial, therefore specific literature and web content is available (see [3])

The reference plane to the GCPW should always be a ground area, that means the bottom layer for a 2 layer design and mid layer 1 for a 4 layer design (see **Figure 38**). Furthermore, it is important to use a PCB material with a known layer stack and relative permittivity. Small differences in the material thickness have a great influence on the trace impedance, especially on 4 layer designs.

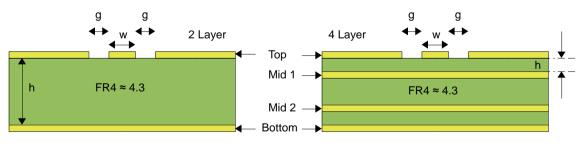


Figure 38: GCPW trace design

Placement on the PCB 8.7.

The PCB design of the radio module base board and placement affects the radio characteristic. The radio module with chip antenna should be placed at the edge or side of a base board. The chip antenna should be directed to PCB side.

Figure 39: Placing at the edge

Figure 40: Placing at the center edge

Do not place the chip antenna radio module within the base board. This will effect a very poor radio performance. Instead radio modules with RF pads could be placed everywhere on the PCB. But it should be enough space for routing a RF trace to a coaxial connector or to an onboard antenna.

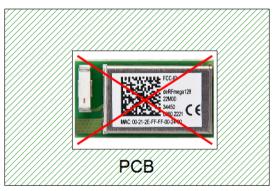


Figure 41: Placing in the center with antenna Figure 42: Placing in the center with RF pad

Do not place ground areas below the radio module (see Section 8.5) and near the chip antenna.

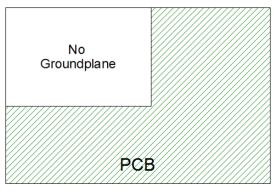


Figure 43: No ground plane under the module

8.8. Fiducial marker

Usually the radio module will be placed with a SMT placement system. The pick-and-place machine uses an internal camera system to match the pick-and-place data with the PCB to ensure that all components are placed correctly. The component orientation is realized with fiducial markers on the PCB. Mostly used are round markers without solder mask and solder paste (see black arrows in **Figure 44**). It is sufficient to place three round markers at different corners of the PCB to ensure a proper placement of common SMT components like resistors, capacitor or diodes and transistors. Big sized components with bottom pins like BGA or LGA should have their own fiducial markers to avoid placement errors in the assembly process. We propose a minimum of two diagonal edge markers without solder mask and paste, better a marker on each corner of the radio module (see red arrows in **Figure 44**).

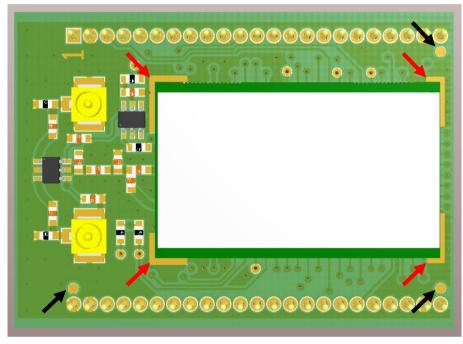


Figure 44: Fiducial markers on a radio module base board

8.9. Reference Design for deRFmega256-23M12

8.9.1. Overview

A reference design allows for a fast design-in of radio modules. Following its recommendations the most RF issues become subsidiary. Even with little or no RF experience it will be possible to get an optimal RF performance of a custom design.

This reference design description must be respected for the use of deRFmega256-23M12 in the United States and to fulfil the requirements of FCC regulations according to the 'Transmitter Module Equipment Authorization Guide' **[10]**. See **Section 14.1** for further notes of FCC compliance. If the reference design will be integrated into a custom design, it will fulfil the FCC requirements, too.

The radio module deRFmega256-23M12 was measured and certified on the reference design board named RaspBee (see **Figure 45**). Further information on this device can be found in **Section 16**. All following design descriptions are based on RaspBee.

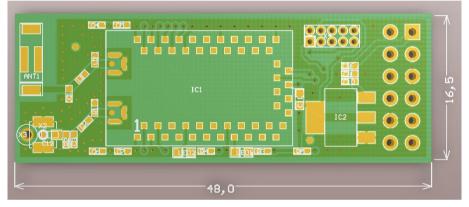


Figure 45: Reference design board (RaspBee)

The design guide allows it to create a base board according to the reference board PCB properties. To fulfil the above-mentioned FCC requirements, the RF area of a custom PCB must have the same (design) properties. Any deviation from the reference design will result in a loss of FCC certification of the radio module and the custom design, unless the individual design will be certified again. However re-certification is possible and may be performed as Permissive Change Class II [11]. A partial re-measurement of RF properties is necessary.

Note: Please get in contact with us to advise you for a custom FCC certified design. If necessary we will also provide RF part design data. This may require signing a Non-Disclosure Agreement.

The important area of the reference design is the RF part shown in **Figure 46**. One RF-OUT pad of the radio module is connected to the chip antenna and the other RF-OUT pad is connected to a coaxial connector or an optional wire antenna. It is also permitted to use only one of the two RF outputs, if needed. In this case terminate the unused port with 50 ohms to ground.

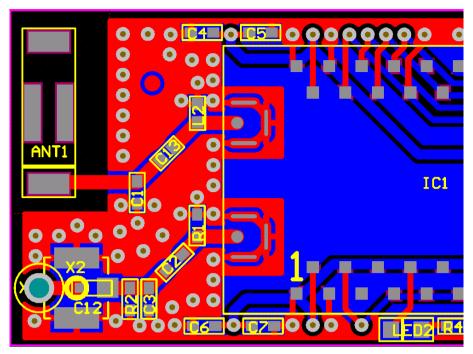


Figure 46: RF design

8.9.2. PCB design

The used standard technology PCB has the following properties:

- Two-layer board
- Board material FR4 TG 135
- Dielectric constant 4.4 to 4.8 at 1 MHz
- Board thickness of 1.55 mm
- Copper layer thickness of 35 µm
- Top and bottom solder
- No silk screen used

If the custom board is a multi-layer board, it is possible to leave all inner layers within the RF part blank to get a two-layer board in this area. **Figure 47** shows the layer stack as presented by the PCB design tool.

8.9.3. RF trace design

The RF trace is designed as GCPW (see Section 8.6) with the following properties:

- GCPW width is 0.7 mm
- GCPW gap is 0.2 mm

Figure 48 shows the RF traces including their length. The middle traces and matching parts are routed in a 45 degree pitch. The PCB design tool defines a trace as a line with a specified width. However the traces have a round edge unlike the measurement start and end point.

If one of the RF traces will not be used, it is necessary to terminate it with 50 ohms to ground. One 49.9 ohms 0402 resistor is applicable. Alternatively, two 100 ohms resistors in parallel will work in the same way.

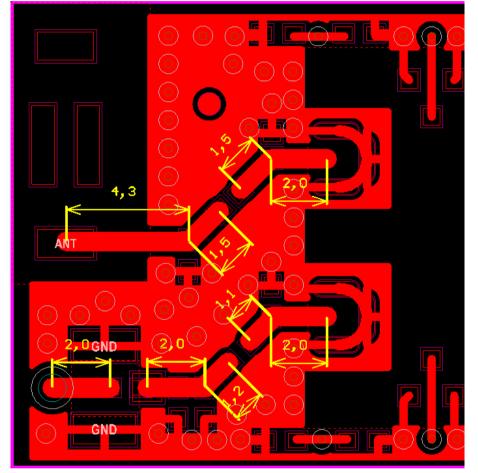


Figure 48: RF trace length (all pads in draft view mode)

All matching parts are shown in **Figure 46** and have a 0402 footprint with these dimensions:

- Pad width is 0.5 mm
- Pad length is 0.6 mm
- Pad center to center distance is 1.1 mm

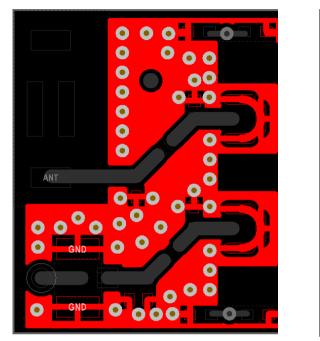


Figure 49: Pad design 0402

8.9.4. Ground area and vias

The ground area is important to ensure a proper RF radiation and antenna characteristic. Both ground planes on top and bottom layer (highlighted in **Figure 50** and **Figure 51**) must be connected together with sufficient vias. The ground planes should not be separated by other signal traces.

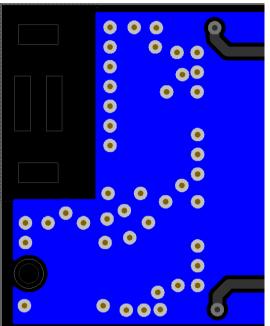


Figure 51: Bottom ground

Figure 50: Top ground

8.9.5. Chip antenna

The used chip antenna is optimized for being placed at the PCB edge. Its footprint dimensions are shown in **Figure 52**. Further details of the used antenna can be found in the manufacturer's datasheets [11]. The used antenna and all matching parts are listed in **Table 8-2**.

BOM – Chip antenna and matching parts							
ID	Value	Order code	Vendor	Comment			
ANT1	-	2450AT43B100	Johanson Technology				
C1	-	-	-	Not assembled			
C13	22 pF	GRM1555C1H220JZ01D	Murata				
L2	1.5 nH	HK10051N5S-T	Taiyo Yuden				

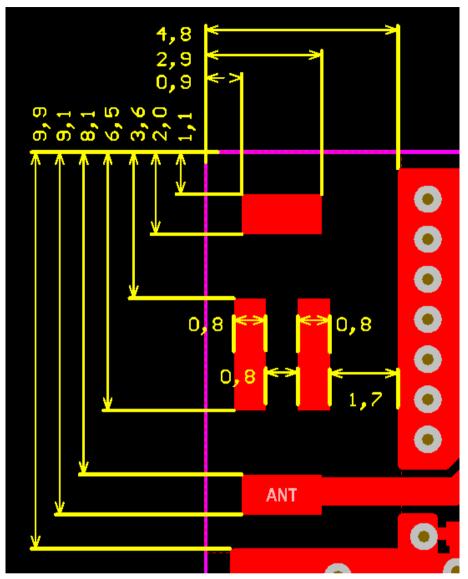


Figure 52: Chip antenna footprint

8.9.6. Coaxial connector layout

The coaxial connector allows the connection of an external antenna. It is only allowed to use the approved antennas as listed in **Section 14.4**. Figure 53 shows the connector footprint dimensions. Both coaxial connector and matching parts are listed in **Table 8-3**.

Table 8-3: BOM coaxial connector

BON	BOM – Coaxial connector and matching parts			
ID	Value	Order code	Vendor	Comment
X2	-	U.FL-R-SMT-1(10)	Hirose	
R1	49R9	RC1005F49R9CS	Samsung	Termination resistor if coax not used, otherwise not assembled
R2	10 k	RC10005F1002CS	Samsung	
C2	22 pF	GRM1555C1H220JZ01D	Murata	
C3	-	-	-	Not assembled

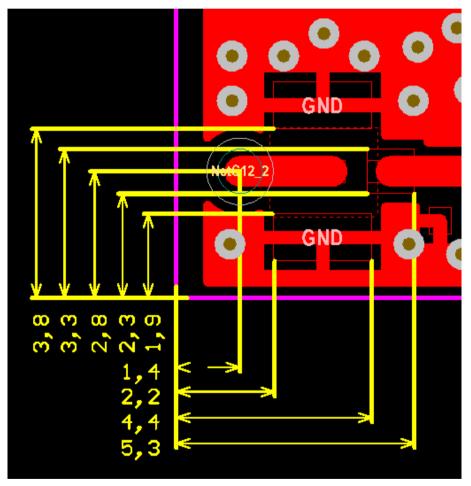


Figure 53: Coaxial connector and wire antenna footprint (all pads in draft view mode)

8.9.7. Power Supply, LEDs and Connector

The radio module needs only a few external components for a proper functionality except the RF part. **Figure 54** illustrates the power supply with voltage stabilizing capacitors, LEDs with series resistance and the Raspberry Pi interface connector. All described components below are listed in **Table 8-4**.

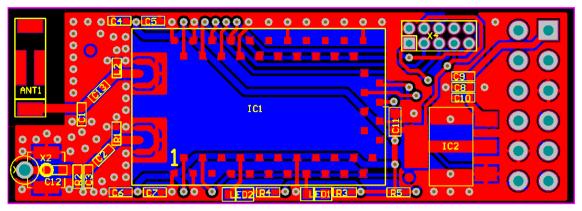


Figure 54: Reference design board with all components

The power supply IC2 is realized as a low dropout voltage regulator with a fixed output of 3.3 V (VCC). The input is stabilized with 0.1 uF and two 4.7 uF capacitors (C8, C9 and C10). The maximum allowed input voltage is defined with 5.5 V. The 3.3 V output voltage needs a 10 uF capacitor (C11). The described capacitors should be always placed as near as possible to the LDO to prevent the radio module from voltage drops that may cause an unwanted reset. Furthermore, each VCC pin of the radio module should be stabilized with 0.1 uF and 1 uF capacitors (C4, C5 and C6, C7).

Each red and green low current LED (LED1 and LED2) have a series resistance of 820R (R3 and R4). They are working low-active by configuring the controller pins PD7 (LED1) and PG2 (LED2) as output port pins and enabled by setting the pin level to low respectively.

The 12 pin interface connector (X1) is designed to be placed on a Raspberry Pi board (**Figure 55**) and provide the 5.0 V power supply. The UART, reset and GPIO signals are related to the 3.3 V radio module VCC power supply. The low-active reset signal has a 10k pull-up resistor to 3.3 V to prevent unwanted reset events.

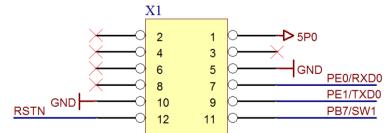


Figure 55: Raspberry Pi interface connector

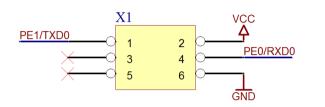
8.9.8. Complete Bill of Material

The **Table 8-4** lists all components of the reference design board. Not assembled parts are greyed out. The respective schematic can be found on our webpage **[16]**.

Table 8-4: Complete BOM

BOM – Default reference design for deRFmega256-23M12				
ID	Value	Order code	Vendor	Comment
ANT1	-	2450AT43B100	Johanson Technology	2.4-2.5 GHz
C1	-	-	-	0402 / Not assembled
C2	22 pF	GRM1555C1H220JZ01D	Murata	0402 / C0G / 50 V / Not assembled
C3	-	-	-	0402 / Not assembled
C4	1 uF	C0402C105K9PAC	Kemet	0402 / X5R / 6.3 V
C5	0.1 uF	GRM155R71C104KA88D	Murata	0402 / X7R / 16 V
C6	1 uF	C0402C105K9PAC	Kemet	0402 / X5R / 6.3 V
C7	0.1 uF	GRM155R71C104KA88D	Murata	0402 / X7R / 16 V
C8	0.1 uF	GRM155R71C104KA88D	Murata	0402 / X7R / 16 V
C9	4.7 uF	GRM155R60J475M	Murata	0402 / X5R / 6.3 V
C10	4.7 uF	GRM155R60J475M	Murata	0402 / X5R / 6.3 V
C11	10 uF	GRM188R60J106ME47	Murata	0603 / X5R / 6.3 V
C12	22 pF	GRM1555C1H220JZ01D	Murata	0402 / C0G / 50 V /
				Not assembled
C13	22 pF	GRM1555C1H220JZ01D	Murata	0402 / C0G / 50 V
IC1	-	deRFmega256-23M12	dresden	
			elektronik	
IC2	-	LD1117S33CTR	STM	SOT223 / 800 mA / 15 V
L2	1.5 nH	HK10051N5S-T	Taiyo Yuden	0402 / 300 mA / 13 GHz
LED1	-	TLMS1000-GS08	Vishay	0603 / red / 4 mcd @ 2 mA
LED2	-	LG L29K-G2J1-24-Z	Osram	0603 / green / ~5 mcd @ 2 mA
R1	49R9	RC1005F49R9CS	Samsung	0402 / TK100 / 50 V /
R2	10 k	RC1005F1002CS	Samsung	0402 / TK100 / 50 V /
			-	Not assembled
R3	820R	RC1005F820CS	Samsung	0402 / TK100 / 50 V
R4	820R	RC1005F820CS	Samsung	0402 / TK100 / 50 V
R5	10 k	RC1005F1002CS	Samsung	0402 / TK100 / 50 V
X1	-	803-87-012-10-001101	CAB	Socket header 2x6 pin
X2	-	U.FL-R-SMT-1(10)	Hirose	U.FL coaxial connector Not assembled
X3	-	Wire antenna	-	Not assembled
X4	-	M50-3500542	Harwin	Socket header 2.5 pin Not assembled

9. Clock


The radio module contains an on-board 32.768 kHz 20 ppm quartz crystal for the MCU and a 16.000 MHz 10 ppm quartz crystal for the internal transceiver. For optimum RF timing characteristics it is necessary to use a low tolerance crystal. The watch crystal clocks a timer, not the processor. The timer is intended to wake-up the processor periodically.

10. Application circuits

10.1. UART

Two U(S)ART interfaces are available on the radio modules. For communication to a host with a different supply voltage domain it is necessary to use a level-shifter. We recommend the USB level shifter by dresden elektronik. The level-shifter can be connected to the custom base board via 100 mil 2 x 3 pin header. The pin assignment should be designed as below in **Figure 56**. For an UART connection it is sufficient to use only TXD, RXD and GROUND signals.

PE1/TXD0
 VCC
 Not connected
 PE0/RXD0
 Not connected
 GND

Figure 56: 100 mil 2 x 3 pin header for UART0

10.2. ISP

The AVR based radio modules can be programmed via JTAG and ISP interface. For ISP connections a 100 mil 2 x 3 pin header should be used. The pin assignment is given in **Figure 57**. The MCU ATmega128RFA1 uses the ISP signals PDO and PDI on the same pins like the SPI with MISO and MOSI. We recommend the use of an 'AVR ISP programmer'.

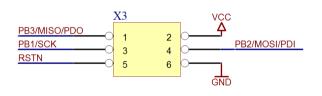


Figure 57: 100 mil 2x3 pin header for ISP

10.3. JTAG

The AVR based radio modules can be programmed via JTAG and ISP interface. For JTAG connections a 100 mil 2×5 pin header should be used. The pin assignment is given in **Figure 58**. We recommend the use of 'Atmel AVR Dragon' or 'Atmel JTAG ICE mkll' programmer.

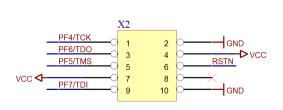


Figure 58: 100 mil 2x5 pin header for JTAG

- 1. PB3/MISO/PDO
- 2. VCC
- 3. PB1/SCK 4. PB2/MOSI/PDI
- 5. RSTN
- 6. GND

10.4. TWI

The connection of external peripherals or sensors via Two-Wire-Interface is possible by using the TWI clock signal PD0/SCL and TWI data signal PD1/SCA. The necessary pull-up resistors must be placed externally on the base board. We recommend the use of $4.7 \text{ k}\Omega$ resistors as shown in **Figure 59**.

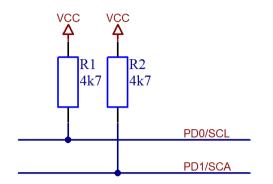


Figure 59: Two-Wire-Interface

10.5. External front end and antenna diversity

The radio module deRFmega128-22M10 and deRFmega256-23M10 can be connected with an external front end including power amplifier (PA) for transmission and low noise block (LNA) for receiving. **Figure 60** shows a possible design as block diagram. A custom design can contain a single PA or single LNA or a complete integrated front-end chip. It depends mainly on the application. Furthermore, it is possible to include a RF switch for driving the antenna diversity feature.

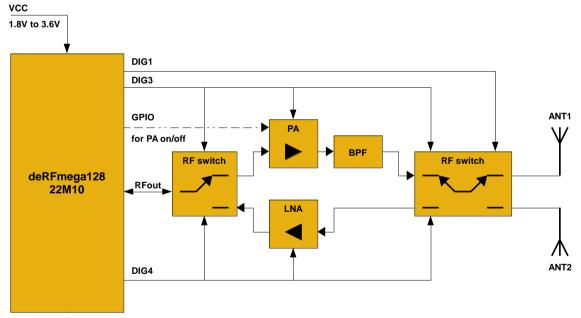


Figure 60: block diagram for external PA/LNA and antenna diversity control

Unbalanced RF output

The radio module 22M10 has a 50 Ω unbalanced RF output. For designs with external RF power amplifier a RF switch is required to separate the TX and RX path.

RF switches to PA, LNA and antenna

The switch must have 50 Ω inputs and outputs for the RF signal. The switch control could be realized with the DIG3 and DIG4 signal of the radio module. Refer to **Section 7.2.1** for detailed information.

PA

The PA has to be placed on the TX path after the RF switch. It is important to regard the PA's manufacturer datasheet and application notes, especially for designing the power supply and ground areas. A poor design could cause a very poor RF performance. For energy efficiency it is useful to activate the PA only during TX signal transmission. In this case the DIG3 signal can be used as switch for (de-)activating the PA. Some PAs have the possibility to set them into sleep state. This application can be realized via a dedicated GPIO pin. Refer to **Section 7.2.1** for more information.

BPF

The use of a band-pass filter is optional. It depends on the PA properties. Some PAs have an internal BPF and other do not have. The BPF is necessary to suppress spurious emissions of the harmonics and to be compliant with national EMI limits. It is possible to use an integrated BPF part or discrete parts. The advantage of the first variant is that the BPF characteristic is known and published in the manufacturer's datasheet.

LNA

The LNA could be used to amplify the received signal. Please regard the manufacturer's datasheet for a proper design. The control could be done by DIG4 signal. Refer to **Section 7.2.1** for more information.

RF switch for antenna diversity

The switch must have 50 Ω inputs and outputs for the RF signal. It is possible to use a separate switch with 2 inputs and 2 outputs or use another (third) switch following the switch required for the PA/LNA. Antenna diversity switching could be controlled via DIG1. Refer to **Section 7.2.1** for more information.

Certification

The customer has to ensure, that custom front-end and antenna diversity designs based on the radio module deRFmega128-22M10 or deRFmega256-23M10 will meet all national regulatory requirements of the assignment location and to have all necessary certifications, device registration or identification numbers.

For long range applications we recommend the use of the deRF-mega128-22M12 radio module which already includes PA, LNA, BPF, RF switches and antenna diversity. This module will be provided by dresden elektronik with certified reference designs for EU and US applications that meet all regulatory requirements and reduce custom design costs.

11. Programming

The programming procedures are described in the documentation **[4]**, which is online available on dresden elektronik webpage. It describes the update process of the radio module, the required software and hardware for programming via JTAG and the driver installation on different operating systems.

The firmware programming of deRFmega256 radio modules is supported by Atmel Studio 6.

12. Pre-flashed firmware

The radio modules will be delivered without pre-flashed firmware.

13. Adapter boards

dresden elektronik offers these radio modules already soldered on suitable adapter boards. These boards can be plugged into dresden elektronik's development hardware platforms deRFbreakout Board, deRFnode or deRFgateway. For detailed information please refer to the datasheet [5], [6], [7] and [8] of the respective adapter board.

Figure 61: deRFmega128-22T00 adapter board with radio module deRFmega128-22M00 / deRFmega256-23T00 adapter board with radio module deRFmega256-23M00

Figure 62: deRFmega128-22T02 adapter board with radio module deRFmega128-22M10 / deRFmega256-23T02 adapter board with radio module deRFmega256-23M10

Figure 63: deRFmega128-22T13 adapter board with radio module deRFmega128-22M12 / deRFmega256-23T13 adapter board with radio module deRFmega256-23M12

14. Radio certification

14.1. United States (FCC)

The deRFmega128-22M00, deRFmega128-22M10, deRFmega128-22M12, deRFmega256-23M00, deRFmega256-23M10 and deRFmega256-23M12 comply with the requirements of FCC part 15. The certification process for deRFmega128-22M10, deRFmega128-22M12, deRFmega256-23M00 and deRFmega256-23M10 is pending.

To fulfill FCC Certification requirements, an OEM manufacturer must comply with the following regulations:

The modular transmitter must be labeled with its own FCC ID number, and, if the FCC ID is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module.

This exterior label can use wording such as the following. Any similar wording that expresses the same meaning may be used.

Sample label for radio module deRFmega128-22M00:

FCC-ID: XVV-MEGA22M00

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Sample label for radio module deRFmega256-23M12:

FCC-ID: XVV-MEGA23M12

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The Original Equipment Manufacturer (OEM) must ensure that the OEM modular transmitter must be labeled with its own FCC ID number. This includes a clearly visible label on the outside of the final product enclosure that displays the contents shown below. If the FCC ID is not visible when the equipment is installed inside another device, then the outside of the device into which the equipment is installed must also display a label referring to the enclosed equipment.

This equipment complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation (FCC 15.19). The internal / external antenna(s) used for this mobile transmitter must provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

Installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF exposure compliance. This device is approved as a mobile device with respect to RF exposure compliance, and may only be marketed to OEM installers. Use in portable exposure conditions (FCC 2.1093) requires separate equipment authorization.

Modifications not expressly approved by this company could void the user's authority to operate this equipment (FCC section 15.21).

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at their own expense (FCC section 15.105).

According to KDB 996369 **[10]** the radio module deRFmega256-23M12 can only be used with a host antenna circuit trace layout design in strict compliance with the OEM instructions provided in this user manual.

14.2. Innovation, Science and Economic Development (ISED) Canada

This device contains licence-exempt transmitter(s)/receiver(s) that comply with Innovation, Science and Economic Development Canada's licence-exempt RSS(s). Operation is subject to the following two conditions:

- 1. This device may not cause interference.
- 2. This device must accept any interference, including interference that may cause undesired operation of the device.

L'émetteur/récepteur exempt de licence contenu dans le présent appareil est conforme aux CNR d'Innovation, Sciences et Développement économique Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

- 1. L'appareil ne doit pas produire de brouillage.
- 2. L'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

This equipment complies with radio frequency exposure limits set forth by ISED Canada for an uncontrolled environment.

Cet équipement est conforme aux limites d'exposition aux radiofréquences définies par ISDE Canada pour un environnement non contrôlé.

Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. The OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).

This Module is labelled with its own ISED certification number. If the ISED certification number is not visible while installed inside another device, then the device should display the label on it referring the enclosed module. In that case, the final end product must be labelled in a visible area with the following:

"Contains Transmitter Module IC: 8720A-22M00"

OR

"Contains IC: 8720A-22M00"

Ce module est étiqueté avec son propre ISDE ID. Si le numéro de certification ISDE ID n'est pas visible lorsqu'il est installé à l'intérieur d'un autre appareil, l'appareil doit afficher l'étiquette sur le module de référence ci-joint. Dans ce cas, le produit final doit être étiqueté dans un endroit visible par le texte suivant:

"Contains Transmitter Module IC: 8720A-22M00"

OU

"Contains IC: 8720A-22M00"

14.3. European Union (ETSI)

The deRFmega128-22M00, deRFmega128-22M10, deRFmega128-22M12, deRFmega256-23M00, deRFmega256-23M10 and deRFmega256-23M12 are conform for use in European Union countries.

If the deRFmega128-22M00, deRFmega128-22M10, deRFmega128-22M12, deRFmega256-23M00, deRFmega256-23M10 and deRFmega256-23M12 modules are incorporated into a product, the manufacturer must ensure compliance of the final product to the European harmonized EMC and low-voltage/safety standards. A Declaration of Conformity must be issued for each of these standards and kept on file as described in Annex II of the R&TTE Directive.

The manufacturer must maintain a copy of the deRFmega128-22M00, deRFmega128-22M10, deRFmega128-22M12, deRFmega256-23M00, deRFmega256-23M10 and deRFmega256-23M12 modules documentation and ensure the final product does not exceed the specified power ratings, antenna specifications, and/or installation requirements as specified in the user manual. If any of these specifications are exceeded in the final product, a submission must be made to a notified body for compliance testing to all required standards.

The CE marking must be affixed to a visible location on the OEM product. The CE mark shall consist of the initials "CE" taking the following form:

- If the CE marking is reduced or enlarged, the proportions must be respected.
- The CE marking must have a height of at least 5 mm except where this is not possible on account of the nature of the apparatus.
- The CE marking must be affixed visibly, legibly, and indelibly.

More detailed information about CE marking requirements can be found in [9].

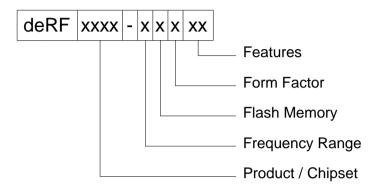
14.4. Approved antennas

The deRFmega128-22M00 has an integrated chip antenna and is fully compliant with all regulations.

The deRFmega256-23M12 is compliant with the listed approved antennas in Table 14-1.

Table 14-1: Approved antenna(s) and accessory

Approved antenna(s) for deRFmega256-23M12				
Туре	Gain	Mount	Order code	Vendor / Supplier
External antenna				
2400 to 2483.5 MHz Rubber antenna	+5dBi (peak)	RP- SMA	17013.RSMA	WiMo
U.FL-to-RP-SMA pigtail, 15 cm	-0.5dB		BN-023769	dresden elektronik
Integrated antenna				
2400 to 2483.5 MHz Chip antenna	+1.3dBi (peak)	SMT	2450AT43B100	Johanson Technology


According to KDB 178919 **[11]** it is allowed to substitute approved antennas through equivalent antennas of the same type with equal or less antenna gain:

'Equivalent antennas must be of the same type (e.g., yagi, dish, etc.), must be of equal or less gain than an antenna previously authorized under the same FCC ID, and must have similar in band and out-of-band characteristics (consult specification sheet for cutoff frequencies).'

15. Ordering information

The product name includes the following information:

Table 15-1: Product name code

Product name code			
Information	Code	Explanation	Comments
Product / Chipset	mega128	ATmega128RFA1	MCU
	Mega256	ATmega256RFR2	MCU
Frequency Range	2	2.4 GHz	
Flash memory	2	128 kByte	
	3	256 kByte	
Size	М	OEM module	solderable
Features	00	chip antenna	onboard
	10	RFOUT pad	
	12	Internal front end, antenna diversity, 2x RFOUT pads	

Table 15-2: Ordering information

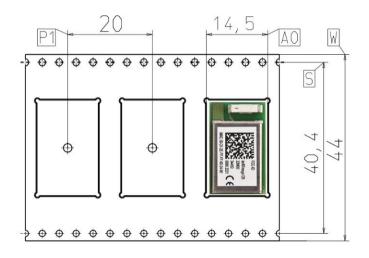
Ordering information			
Part number	Product name	Comments	
BN-034491	deRFmega128-22M00	solderable radio module with onboard chip antenna, no pre-flashed firmware	
BN-034492	deRFmega128-22M10	solderable radio module with RFOUT pad, no pre-flashed firmware	
BN-034368	deRFmega128-22M12	solderable radio module with onboard front end, antenna diversity RFOUT pads, no pre-flashed firmware	
BN-600011	deRFmega256-23M00	solderable radio module with onboard chip antenna, no pre-flashed firmware	
BN-600012	deRFmega256-23M10	solderable radio module with RFOUT pad, no pre-flashed firmware	
BN-600013	deRFmega256-23M12	solderable radio module with onboard front end, antenna diversity RFOUT pads, no pre-flashed firmware	

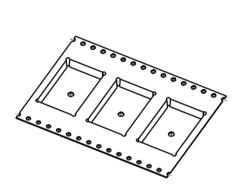
16. Related products

RaspBee

The RaspBee is a ZigBee addon board for Raspberry Pi (RPi). This will enhance the application range of RPi with monitoring and controlling ZigBee networks, especially with ZigBee Light Link (ZLL) profile and ZigBee Home Automation (ZHA). ZigBee compatible end-devices and routers from a lot of manufacturers can be added into the network.

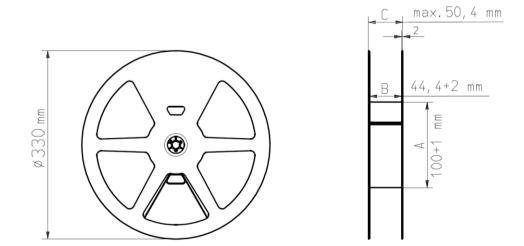
Find more information about all related products on our webpage **www.dresden-elektronik.de**


17. Packaging dimension


The radio modules deRFmega128-22M00, deRFmega128-22M12, deRFmega256-23M00 and deRFmega256-23M12 will be delivered in Tape & Reel.

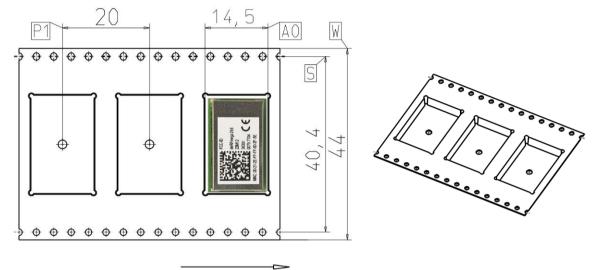
The radio modules deRFmega128-22M10 and deRFmega256-23M10 are delivered as singular pieces with an appropriate ESD packaging. The delivery as Tape & Reel or Tray will be possible for larger amounts but is not yet available.

17.1. Packaging for deRFmega128-22M00 and deRFmega256-23M00

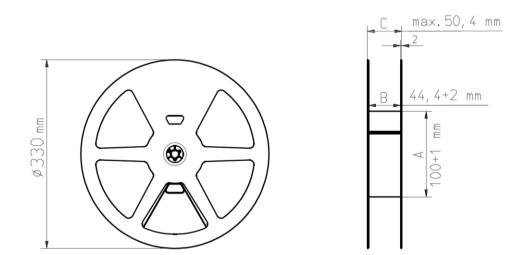

Tape dimensions

feeding direction

Reel dimensions



Dimensions are nominal and measured in mm.


17.2. Packaging for deRFmega128-22M12 and deRFmega256-23M12

Tape dimensions

feeding direction

Reel dimensions

Dimensions are nominal and measured in mm.

18. Revision notes

Actually, no design issues of the radio modules are known.

All errata of the AVR MCU ATmega128RFA1 are described in the datasheet [1].

All errata of the AVR MCU ATmega256RFR2 are described in the datasheet [2].

19. References

- [1] ATmega128RFA1: 8-bit AVR Microcontroller with Low Power 2.4 GHz Transceiver for ZigBee and IEEE802.15.4; Datasheet, URL: http://www.atmel.com
- [2] ATmega256RFR2: 8-bit AVR Microcontroller with Low Power 2.4 GHz Transceiver for ZigBee and IEEE802.15.4; Datasheet, URL: http://www.atmel.com
- [3] AppCAD Version 3.0.2, RF & Microwave design software, Agilent Technologies; URL: http://www.hp.woodshot.com
- [4] User Manual Firmware Update; URL: http://www.dresdenelektronik.de/funktechnik/products/radio-modules/oemderfmega/description/?L=0&eID=dam_frontend_push&docID=1917
- [5] Datasheet adapter board 22T00 | 22T02, URL: http://www.dresdenelektronik.de/funktechnik/products/radio-modules/adapter-boards-oemmodules/description/?L=1%252Fproducts%252Fusb-radio-sticks%252Fderfusbanalyzer%252F%253FL%253D1&eID=dam_frontend_push&docID=1816
- [6] Datasheet adapter board 22T13, URL: http://www.dresdenelektronik.de/funktechnik/products/radio-modules/adapter-boards-oemmodules/description/?L=1%252Fproducts%252Fusb-radio-sticks%252Fderfusbanalyzer%252F%253FL%253D1&eID=dam_frontend_push&docID=1818
- [7] Datasheet adapter board 23T00 | 23T02, URL: http://www.dresdenelektronik.de/funktechnik/products/radio-modules/adapter-boards-oemmodules/description/?L=1&eID=dam_frontend_push&docID=1859
- [8] Datasheet adapter board 23T13, URL: http://www.dresdenelektronik.de/funktechnik/products/radio-modules/adapter-boards-oemmodules/description/?L=1&eID=dam_frontend_push&docID=1861
- [9] Directive 1999/5/EC, European Parliament and the Council, 9 March 1999, section 12
- [10] Transmitter Module Equipment Authorization Guide; 996369 D01 Module Certification Guide; FCC OET; URL: https://apps.fcc.gov/oetcf/kdb/forms/FTSSearchResultPage.cfm?id=44637&switch=P
- [11] Permissive Change Policy; 178919 D01 Permissive Change Policy); FCC OET; URL: https://apps.fcc.gov/oetcf/kdb/forms/FTSSearchResultPage.cfm?id=33013&switch=P
- [12] 2.4GHz Chip-Antenna 2450AT43B100 by JOHANSON TECHNOLOGY; Datasheet; URL: http://www.johansontechnology.com/datasheets/antennas/2450AT43B100.pdf

- [13] Schematic and footprint library for Altium Designer[®]; URL: http://www.dresdenelektronik.de/funktechnik/service/downloads/documentation/?eID=dam_frontend_pus h&docID=2024
- [14] Schematic and footprint library for EAGLE[®]; URL: http://www.dresdenelektronik.de/funktechnik/service/downloads/documentation/?eID=dam_frontend_pus h&docID=2023
- [15] STEP model library for CAD tools; URL: http://www.dresdenelektronik.de/funktechnik/service/downloads/documentation/?eID=dam_frontend_pus h&docID=2022
- [16] Schematic of RaspBee; URL: http://www.dresden-elektronik.de/fileadmin/Downloads/ Dokumente/Produkte/3_Development_Boards/RPI_ZBS_rev00_SCH.pdf

dresden elektronik ingenieurtechnik gmbh Enno-Heidebroek-Straße 12 01237 Dresden GERMANY

Phone +49 351 31850-0 Fax +49 351 31850-10 Email wireless@dresden-elektronik.de

Trademarks and acknowledgements

- IEEE 802.15.4[™] is a trademark of the Institute of Electrical and Electronics Engineers (IEEE).
- ZigBee[®] is a registered trademark of the ZigBee Alliance.
- RaspBee[™] is a registered trademark of the dresden elektronik ingenieurtechnik gmbh

All trademarks are registered by their respective owners in certain countries only. Other brands and their products are trademarks or registered trademarks of their respective holders and should be noted as such.

Disclaimer

This note is provided as-is and is subject to change without notice. Except to the extent prohibited by law, dresden elektronik ingenieurtechnik gmbh makes no express or implied warranty of any kind with regard to this guide, and specifically disclaims the implied warranties and conditions of merchantability and fitness for a particular purpose. dresden elektronik ingenieurtechnik gmbh shall not be liable for any errors or incidental or consequential damage in connection with the furnishing, performance or use of this guide.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or any means electronic or mechanical, including photocopying and recording, for any purpose other than the purchaser's personal use, without the written permission of dresden elektronik ingenieurtechnik gmbh.

Copyright © 2018 dresden elektronik ingenieurtechnik gmbh. All rights reserved.